中文版 | English
题名

One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges

作者
发表日期
2020-11-06
DOI
发表期刊
ISSN
0031-9007
EISSN
1079-7114
卷号125期号:19
摘要

The mobility edges (MEs) in energy that separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results that allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avila's global theory and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Nature Science Foundation of China[11825401][11761161003][11921005] ; National Key R&D Program of China[2016YFA0301604] ; Guangdong Innovative and Entrepreneurial Research Team Program[2016ZT06D348] ; Science, Technology and Innovation Commission of Shenzhen Municipality[KYTDPT20181011104202253] ; Strategic Priority Research Program of Chinese Academy of Science[XDB28000000] ; NSFC[11974413][11871286][11671192][11771077] ; NKRDP of China[2016YFA0300600][2016YFA0302104]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000587289700010
出版者
EI入藏号
20204709506514
EI主题词
Crystal lattices ; Optical lattices ; Lyapunov methods ; Computation theory
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Laser Beam Interactions:744.8 ; Mathematics:921 ; Crystal Lattice:933.1.1 ; Systems Science:961
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85096122435
来源库
Scopus
引用统计
被引频次[WOS]:114
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209433
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Shenzhen Institute for Quantum Science and Engineering,Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China
2.International Center for Quantum Materials,School of Physics,Peking University,Beijing,100871,China
3.Collaborative Innovation Center of Quantum Matter,Beijing,100871,China
4.Chern Institute of Mathematics,Lpmc,Nankai University,Tianjin,300071,China
5.Cpht,Cnrs,Institut Polytechnique de Paris,Palaiseau,Route de Saclay,91128,France
6.Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China
7.School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China
8.Yangtze River Delta Physics Research Center,Liyang,Jiangsu,213300,China
9.Cas Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing,100190,China
第一作者单位物理系;  量子科学与工程研究院
第一作者的第一单位物理系;  量子科学与工程研究院
推荐引用方式
GB/T 7714
Wang,Yucheng,Xia,Xu,Zhang,Long,et al. One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges[J]. PHYSICAL REVIEW LETTERS,2020,125(19).
APA
Wang,Yucheng.,Xia,Xu.,Zhang,Long.,Yao,Hepeng.,Chen,Shu.,...&Liu,Xiong Jun.(2020).One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges.PHYSICAL REVIEW LETTERS,125(19).
MLA
Wang,Yucheng,et al."One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges".PHYSICAL REVIEW LETTERS 125.19(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
PhysRevLett.125.1966(841KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yucheng]的文章
[Xia,Xu]的文章
[Zhang,Long]的文章
百度学术
百度学术中相似的文章
[Wang,Yucheng]的文章
[Xia,Xu]的文章
[Zhang,Long]的文章
必应学术
必应学术中相似的文章
[Wang,Yucheng]的文章
[Xia,Xu]的文章
[Zhang,Long]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。