题名 | One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges |
作者 | |
发表日期 | 2020-11-06
|
DOI | |
发表期刊 | |
ISSN | 0031-9007
|
EISSN | 1079-7114
|
卷号 | 125期号:19 |
摘要 | The mobility edges (MEs) in energy that separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results that allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avila's global theory and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | National Nature Science Foundation of China[11825401][11761161003][11921005]
; National Key R&D Program of China[2016YFA0301604]
; Guangdong Innovative and Entrepreneurial Research Team Program[2016ZT06D348]
; Science, Technology and Innovation Commission of Shenzhen Municipality[KYTDPT20181011104202253]
; Strategic Priority Research Program of Chinese Academy of Science[XDB28000000]
; NSFC[11974413][11871286][11671192][11771077]
; NKRDP of China[2016YFA0300600][2016YFA0302104]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000587289700010
|
出版者 | |
EI入藏号 | 20204709506514
|
EI主题词 | Crystal lattices
; Optical lattices
; Lyapunov methods
; Computation theory
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Laser Beam Interactions:744.8
; Mathematics:921
; Crystal Lattice:933.1.1
; Systems Science:961
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85096122435
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:114
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209433 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Shenzhen Institute for Quantum Science and Engineering,Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China 2.International Center for Quantum Materials,School of Physics,Peking University,Beijing,100871,China 3.Collaborative Innovation Center of Quantum Matter,Beijing,100871,China 4.Chern Institute of Mathematics,Lpmc,Nankai University,Tianjin,300071,China 5.Cpht,Cnrs,Institut Polytechnique de Paris,Palaiseau,Route de Saclay,91128,France 6.Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China 7.School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China 8.Yangtze River Delta Physics Research Center,Liyang,Jiangsu,213300,China 9.Cas Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing,100190,China |
第一作者单位 | 物理系; 量子科学与工程研究院 |
第一作者的第一单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Wang,Yucheng,Xia,Xu,Zhang,Long,et al. One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges[J]. PHYSICAL REVIEW LETTERS,2020,125(19).
|
APA |
Wang,Yucheng.,Xia,Xu.,Zhang,Long.,Yao,Hepeng.,Chen,Shu.,...&Liu,Xiong Jun.(2020).One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges.PHYSICAL REVIEW LETTERS,125(19).
|
MLA |
Wang,Yucheng,et al."One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges".PHYSICAL REVIEW LETTERS 125.19(2020).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
PhysRevLett.125.1966(841KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论