题名 | High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning |
作者 | |
通讯作者 | Yang,Jianlong |
发表日期 | 2020-12-01
|
DOI | |
发表期刊 | |
ISSN | 1083-3668
|
EISSN | 1560-2281
|
卷号 | 25期号:12 |
摘要 | ["Significance: Reducing the bit depth is an effective approach to lower the cost of an optical coherence tomography (OCT) imaging device and increase the transmission efficiency in data acquisition and telemedicine. However, a low bit depth will lead to the degradation of the detection sensitivity, thus reducing the signal-to-noise ratio (SNR) of OCT images.","Aim: We propose using deep learning to reconstruct high SNR OCT images from low bit-depth acquisition.","Approach: The feasibility of our approach is evaluated by applying this approach to the quantized 3- to 8-bit data from native 12-bit interference fringes. We employ a pixel-to-pixel generative adversarial network (pix2pixGAN) architecture in the low-to-high bit-depth OCT image transition.","Results: Extensively, qualitative and quantitative results show our method could significantly improve the SNR of the low bit-depth OCT images. The adopted pix2pixGAN is superior to other possible deep learning and compressed sensing solutions.","Conclusions: Our work demonstrates that the proper integration of OCT and deep learning could benefit the development of healthcare in low-resource settings. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License."] |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Ningbo
|
WOS研究方向 | Biochemistry & Molecular Biology
; Optics
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Biochemical Research Methods
; Optics
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000605144900003
|
出版者 | |
EI入藏号 | 20210109729418
|
EI主题词 | Biomedical signal processing
; Chemical detection
; Data acquisition
; Deep learning
; Image enhancement
; Image reconstruction
; Optical tomography
; Pixels
; Tomography
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Optical Devices and Systems:741.3
; Imaging Techniques:746
; Chemistry:801
|
ESI学科分类 | CLINICAL MEDICINE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209438 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Chinese Academy of Sciences,Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials,China 2.University of Science and Technology of China,Nano Science and Technology Institute,Suzhou,China 3.ShanghaiTech University,School of Information Science and Technology,China 4.Southern University of Science and Technology,Department of Computer Science and Engineering,China 5.Shenzhen Bay laboratory,China |
推荐引用方式 GB/T 7714 |
Hao,Qiangjiang,Zhou,Kang,Yang,Jianlong,et al. High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning[J]. JOURNAL OF BIOMEDICAL OPTICS,2020,25(12).
|
APA |
Hao,Qiangjiang.,Zhou,Kang.,Yang,Jianlong.,Hu,Yan.,Chai,Zhengjie.,...&Liu,Jiang.(2020).High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning.JOURNAL OF BIOMEDICAL OPTICS,25(12).
|
MLA |
Hao,Qiangjiang,et al."High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning".JOURNAL OF BIOMEDICAL OPTICS 25.12(2020).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
High signal-to-noise(9154KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论