中文版 | English
题名

Fisher deep domain adaptation

作者
DOI
发表日期
2020
会议录名称
页码
469-477
摘要
Deep domain adaptation models learn a neural network in an unlabeled target domain by leveraging the knowledge from a labeled source domain. This can be achieved by learning a domain-invariant feature space. Though the learned representations are separable in the source domain, they usually have a large variance and samples with different class labels tend to overlap in the target domain, which yields suboptimal adaptation performance. To fill the gap, a Fisher loss is proposed to learn discriminative representations which are within-class compact and between-class separable. Experimental results on two benchmark datasets show that the Fisher loss is a general and effective loss for deep domain adaptation. Noticeable improvements are brought when it is used together with widely adopted transfer criteria, including MMD, CORAL and domain adversarial loss. For example, an absolute improvement of 6.67% in terms of the mean accuracy is attained when the Fisher loss is used together with the domain adversarial loss on the Office-Home dataset.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203309034654
EI主题词
Space division multiple access ; Data mining
EI分类号
Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3
Scopus记录号
2-s2.0-85089190175
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209483
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Hong Kong University of Science and Technology,Hong Kong
2.Department of Computer Science and Engineering,Southern University of Science and Technology,
3.Tencent,
4.WeBank,
推荐引用方式
GB/T 7714
Zhang,Yinghua,Zhang,Yu,Wei,Ying,et al. Fisher deep domain adaptation[C],2020:469-477.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yinghua]的文章
[Zhang,Yu]的文章
[Wei,Ying]的文章
百度学术
百度学术中相似的文章
[Zhang,Yinghua]的文章
[Zhang,Yu]的文章
[Wei,Ying]的文章
必应学术
必应学术中相似的文章
[Zhang,Yinghua]的文章
[Zhang,Yu]的文章
[Wei,Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。