中文版 | English
题名

Deep Learning Based Anomaly Detection in Water Distribution Systems

作者
DOI
发表日期
2020-10-30
ISBN
978-1-7281-6856-2
会议录名称
页码
1-6
会议日期
30 Oct.-2 Nov. 2020
会议地点
Nanjing, China
摘要
Water distribution system (WDS) is one of the most essential infrastructures all over the world. However, incidents such as natural disasters, accidents and intentional damages are endangering the safety of drinking water. With the advance of sensor technologies, different kinds of sensors are being deployed to monitor operative and quality indicators such as flow rate, pH, turbidity, the amount of chlorine dioxide etc. This brings the possibility to detect anomalies in real time based on the data collected from the sensors and different kinds of methods have been applied to tackle this task such as the traditional machine learning methods (e.g. logistic regression, support vector machine, random forest). Recently, researchers tried to apply the deep learning methods (e.g. RNN, CNN) for WDS anomaly detection but the results are worse than that of the traditional machine learning methods. In this paper, by taking into account the characteristics of the WDS monitoring data, we integrate sequence-to-point learning and data balancing with the deep learning model Long Short-term Memory (LSTM) for the task of anomaly detection in WDSs. With a public data set, we show that by choosing an appropriate input length and balance the training data our approach achieves better F1 score than the state-of-the-art method in the literature.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20204709520861
EI主题词
Support vector machines ; Water quality ; Disasters ; Long short-term memory ; Water distribution systems ; Potable water ; Balancing ; Sensor networks ; Learning systems ; Decision trees
EI分类号
Water Resources:444 ; Water Analysis:445.2 ; Water Supply Systems:446.1 ; Mechanical Design:601 ; Computer Software, Data Handling and Applications:723 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
Scopus记录号
2-s2.0-85096356332
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9238099
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209493
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Department of Computer Science,Shenzhen,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qian,Kai,Jiang,Jie,Ding,Yulong,et al. Deep Learning Based Anomaly Detection in Water Distribution Systems[C],2020:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
百度学术
百度学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
必应学术
必应学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。