题名 | A Reinforcement Learning Based Medium Access Control Method for LoRa Networks |
作者 | |
通讯作者 | Ding,Yulong |
DOI | |
发表日期 | 2020-10-30
|
ISBN | 978-1-7281-6856-2
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 30 Oct.-2 Nov. 2020
|
会议地点 | Nanjing, China
|
摘要 | LoRa is a low-power long-range network technology, which is used widely in power sensitive and maintenance free Internet of Things applications. LoRa only defines the physical layer protocol, while LoRaWAN is a medium access control (MAC) layer protocol above it. However, simply using ALOHA in LoRaWAN makes a high package collision rate when the number of the end-devices in the network is large, since many end-devices will send the packages to gateway at the same time. To solve this, we present a reinforcement learning (RL) based multi access method for LoRaWAN, which allows end-devices decide when to transmit data based on the environment and reduce the package collision rate. A comparation between the RL method and ALOHA is also included in the paper, which shows that the RL method has a lower package collision rate. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20204709520716
|
EI主题词 | Multi agent systems
; Network layers
; Gateways (computer networks)
; Medium access control
; Low power electronics
; Learning systems
|
EI分类号 | Data Communication, Equipment and Techniques:722.3
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85096352911
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9238127 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209494 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang,Xu,Jiang,Jie,Yang,Shuang Hua,et al. A Reinforcement Learning Based Medium Access Control Method for LoRa Networks[C],2020:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论