题名 | Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence |
作者 | |
通讯作者 | Zhang,Liangchi |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 0268-3768
|
EISSN | 1433-3015
|
卷号 | 112期号:3-4页码:853-865 |
摘要 | This paper presents an artificial intelligence (AI) method for the evolution prediction of surface scratching in sheet metals subjected to contact sliding. Ball-on-disk sliding was employed, and ball diameter, normal load, surface roughness, sliding cycles and the maximum scratching depth in the metal sheet were taken as the fuzzy variables to assess the contributions of individual variables to the surface damage. To improve the prediction accuracy, the quantum-behaved particle swarm optimisation (QPSO) algorithm was further developed and utilised to refine the fuzzy model by optimising the membership functions of the fuzzy variables. It was found that this AI technique, which integrates the fuzzy set theory with the improved QPSO algorithm, can accurately, reliably and efficiently predict the surface scratching evolution, which is otherwise impossible to be implemented. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Baosteel Australia Research and Development Centre[BA17001]
; ARC Research Hub[IH140100035]
; Guangdong Specific Discipline Project[2020ZDZX2006]
|
WOS研究方向 | Automation & Control Systems
; Engineering
|
WOS类目 | Automation & Control Systems
; Engineering, Manufacturing
|
WOS记录号 | WOS:000593560500005
|
出版者 | |
EI入藏号 | 20204809546662
|
EI主题词 | Particle swarm optimization (PSO)
; Sheet metal
; Fuzzy set theory
; Membership functions
; Artificial intelligence
; Surface roughness
; Metals
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Optimization Techniques:921.5
; Physical Properties of Gases, Liquids and Solids:931.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85096608019
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:22
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209585 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.School of Mechanical and Manufacturing Engineering,The University of New South Wales,Sydney,2052,Australia 2.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Baoshan Iron & Steel Co.,Ltd.,Shanghai,200941,China |
通讯作者单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Li,Wei,Zhang,Liangchi,Chen,Xinping,et al. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2020,112(3-4):853-865.
|
APA |
Li,Wei,Zhang,Liangchi,Chen,Xinping,Wu,Chuhan,Cui,Zhenxiang,&Niu,Chao.(2020).Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence.INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,112(3-4),853-865.
|
MLA |
Li,Wei,et al."Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence".INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 112.3-4(2020):853-865.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论