中文版 | English
题名

A formal adversarial perspective: Secure and efficient electronic health records collection scheme for multi-records datasets

作者
通讯作者Asheralieva,Alia
发表日期
2020
DOI
发表期刊
ISSN
2161-5748
EISSN
2161-3915
卷号32
摘要

The collection of private health data without compromising privacy is an imperative aspect of privacy-aware data collection mechanisms. Privacy-preserved data collection is achieved by anonymizing private data before its transmission from data holders to data collectors. Though there exist ample literature on private data collection for 1:1 (single record of a data holder) datasets, collecting multi-records (multiple records of a data holder) datasets (referred to as 1:M datasets) has not received due attention from the research community. Therefore, the current studies experience serious privacy breaches in 1:M dataset thereby limiting their application in secure healthcare applications and systems. In this work, we have formally classified main privacy disclosures on these data collection mechanisms and proposed an improved privacy scheme, namely, horizontal sliced permuted permutation (H-SPP) for 1:M datasets. It uses the composite slicing and anatomy-based approach to protect against the privacy violations like identity, attribute, and membership disclosures. Moreover, we perform formal modeling of the proposed scheme using high-level Petri nets (HLPN) and show that it effectively prevents the identified external and internal privacy attacks. Experimental results show that H-SPP provides robust privacy for health data with high performance.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China (NSFC)[61950410603]
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:000594342600001
出版者
EI入藏号
20204909573148
EI主题词
Health ; Data acquisition ; Data privacy
EI分类号
Medicine and Pharmacology:461.6 ; Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85096939342
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209646
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,COMSATS University Islamabad,Islamabad,Pakistan
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Department of Computer Science,Aberystwyth University,Aberystwyth,United Kingdom
4.Department of Embedded Systems Engineering,Incheon National University,Incheon,South Korea
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Kanwal,Tehsin,Anjum,Adeel,Khan,Abid,et al. A formal adversarial perspective: Secure and efficient electronic health records collection scheme for multi-records datasets[J]. Transactions on Emerging Telecommunications Technologies,2020,32.
APA
Kanwal,Tehsin,Anjum,Adeel,Khan,Abid,Asheralieva,Alia,&Jeon,Gwanggil.(2020).A formal adversarial perspective: Secure and efficient electronic health records collection scheme for multi-records datasets.Transactions on Emerging Telecommunications Technologies,32.
MLA
Kanwal,Tehsin,et al."A formal adversarial perspective: Secure and efficient electronic health records collection scheme for multi-records datasets".Transactions on Emerging Telecommunications Technologies 32(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Khan,Abid]的文章
百度学术
百度学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Khan,Abid]的文章
必应学术
必应学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Khan,Abid]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。