中文版 | English
题名

A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set

作者
通讯作者Tang,Xiaoying
发表日期
2021-02-01
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号68
摘要

In this paper, we propose and validate a deep learning framework that incorporates both multi-atlas registration and level-set for segmenting pancreas from CT volume images. The proposed segmentation pipeline consists of three stages, namely coarse, fine, and refine stages. Firstly, a coarse segmentation is obtained through multi-atlas based 3D diffeomorphic registration and fusion. After that, to learn the connection feature, a 3D patch-based convolutional neural network (CNN) and three 2D slice-based CNNs are jointly used to predict a fine segmentation based on a bounding box determined from the coarse segmentation. Finally, a 3D level-set method is used, with the fine segmentation being one of its constraints, to integrate information of the original image and the CNN-derived probability map to achieve a refine segmentation. In other words, we jointly utilize global 3D location information (registration), contextual information (patch-based 3D CNN), shape information (slice-based 2.5D CNN) and edge information (3D level-set) in the proposed framework. These components form our cascaded coarse-fine-refine segmentation framework. We test the proposed framework on three different datasets with varying intensity ranges obtained from different resources, respectively containing 36, 82 and 281 CT volume images. In each dataset, we achieve an average Dice score over 82%, being superior or comparable to other existing state-of-the-art pancreas segmentation algorithms.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000613291900010
EI入藏号
20204909585417
EI主题词
Numerical methods ; Deep learning ; Image segmentation ; Computerized tomography
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Applications:723.5 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85097042468
来源库
Scopus
引用统计
被引频次[WOS]:61
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209674
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong,Hong Kong
3.School of Electronics and Information Technology,Sun Yat-sen University,Guangzhou,China
4.School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China
5.Department of Radiology,Third Military Medical University Southwest Hospital,Chongqing,China
6.Department of Electrical Engineering,University of Electronic Science and Technology of China,Chengdu,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang,Yue,Wu,Jiong,Liu,Yilong,et al. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set[J]. MEDICAL IMAGE ANALYSIS,2021,68.
APA
Zhang,Yue.,Wu,Jiong.,Liu,Yilong.,Chen,Yifan.,Chen,Wei.,...&Tang,Xiaoying.(2021).A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set.MEDICAL IMAGE ANALYSIS,68.
MLA
Zhang,Yue,et al."A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set".MEDICAL IMAGE ANALYSIS 68(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A deep learning fram(3064KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
百度学术
百度学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
必应学术
必应学术中相似的文章
[Zhang,Yue]的文章
[Wu,Jiong]的文章
[Liu,Yilong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。