中文版 | English
题名

DualSIN: Dual Sequential Interaction Network for Human Intentional Mobility Prediction

作者
通讯作者Song,Xuan
DOI
发表日期
2020-11-03
会议录名称
页码
283-292
摘要
Nowadays, GPS devices have increased explosively and produced huge amounts of trajectory data related to people's outgoing. Through those big location data, many researches aim to analyze human mobility for urban development, such as human movement prediction/modeling, POI (Point-Of-Interest) recommendation. However, trajectory data only contains timestamp and location information. The intention of human movement is not explicit so that it is hard to understand why people go to somewhere. The intention prior to the activity could be of great significance for analyzing and predicting human mobility, which has not been taken into consideration by the existing researches until the present. Thus, in this study, we propose a brand-new concept called human intentional mobility, aiming to employ intention information to predict people's outgoing. We carefully utilize user's search query to sense his intention as well as the intensity. For instance, if a user searches a certain POI for many times in a short period, it will represent a relatively high intention to go there. Then, to fully utilize this intention representation for predicting whether user will visit searched POI or not, we specially design Dual Sequential Interaction Network (DualSIN) as a novel and unique deep-learning model, which can effectively capture the sophisticated interactions among two kinds of sequential information (i.e., search sequence and mobility sequence) and typical categorical information (i.e., user attributes). Last, we evaluate our model on real-world dataset collected from Yahoo! Japan portal application, and demonstrate that it can achieve superior satisfactory performances to the-state-of-the-art models on multiple POI search queries.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20205009603896
EI主题词
Forecasting ; Urban growth ; Behavioral research ; User profile ; Deep learning ; Motion estimation ; Learning systems
EI分类号
Urban Planning and Development:403.1 ; Ergonomics and Human Factors Engineering:461.4 ; Computer Applications:723.5 ; Social Sciences:971
Scopus记录号
2-s2.0-85097262922
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209691
专题工学院_计算机科学与工程系
作者单位
1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology,China
2.Center for Spatial Information Science,University of Tokyo,Japan
3.Yahoo Japan Corporation,Japan
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Quanjun,Jiang,Renhe,Yang,Chuang,et al. DualSIN: Dual Sequential Interaction Network for Human Intentional Mobility Prediction[C],2020:283-292.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Quanjun]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
百度学术
百度学术中相似的文章
[Chen,Quanjun]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
必应学术
必应学术中相似的文章
[Chen,Quanjun]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。