题名 | Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach |
作者 | |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 1524-9050
|
EISSN | 1558-0016
|
卷号 | 22期号:7页码:4622-4634 |
摘要 | Crowdsourced navigation is becoming the prevalent automobile navigation solution with the widespread adoption of smartphones over the past decade, which supports a plethora of intelligent transportation system services. However, it is subjected to Sybil attacks that inject carefully designed adversarial GPS trajectories to compromise the data aggregation system and cause false traffic jams. Successful Sybil attacks have been launched against real crowdsourced navigation systems, yet defending such critical threats has seldom been studied. In this work, a novel deep generative model based on Bayesian deep learning is devised for Sybil attack identification. The proposed model exploits time-series features to embed trajectories in a latent distribution space, which serves as a basis for identifying ones generated by Sybil attacks. Case studies on three real-world vehicular trajectory datasets reveal that the proposed model improves the performance of state-of-the-art baselines by at least 76.6%. Additionally, a hyper-parameter test develops guidelines for parameter selection, and a fast training scheme is proposed and assessed to boost the model training efficiency. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
EI入藏号 | 20204909595361
|
EI主题词 | Cybersecurity
; Computer crime
; Learning systems
; Intelligent systems
; Traffic congestion
; Crime
; Deep learning
; Navigation
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Social Sciences:971
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85097151789
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9261979 |
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209708 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China (e-mail: yujq3@sustech.edu.cn) |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yu,James J.Q.. Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2020,22(7):4622-4634.
|
APA |
Yu,James J.Q..(2020).Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,22(7),4622-4634.
|
MLA |
Yu,James J.Q.."Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 22.7(2020):4622-4634.
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Yu,James J.Q.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yu,James J.Q.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yu,James J.Q.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论