中文版 | English
题名

Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach

作者
发表日期
2020
DOI
发表期刊
ISSN
1524-9050
EISSN
1558-0016
卷号22期号:7页码:4622-4634
摘要
Crowdsourced navigation is becoming the prevalent automobile navigation solution with the widespread adoption of smartphones over the past decade, which supports a plethora of intelligent transportation system services. However, it is subjected to Sybil attacks that inject carefully designed adversarial GPS trajectories to compromise the data aggregation system and cause false traffic jams. Successful Sybil attacks have been launched against real crowdsourced navigation systems, yet defending such critical threats has seldom been studied. In this work, a novel deep generative model based on Bayesian deep learning is devised for Sybil attack identification. The proposed model exploits time-series features to embed trajectories in a latent distribution space, which serves as a basis for identifying ones generated by Sybil attacks. Case studies on three real-world vehicular trajectory datasets reveal that the proposed model improves the performance of state-of-the-art baselines by at least 76.6%. Additionally, a hyper-parameter test develops guidelines for parameter selection, and a fast training scheme is proposed and assessed to boost the model training efficiency.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
EI入藏号
20204909595361
EI主题词
Cybersecurity ; Computer crime ; Learning systems ; Intelligent systems ; Traffic congestion ; Crime ; Deep learning ; Navigation
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Social Sciences:971
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85097151789
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9261979
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209708
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China (e-mail: yujq3@sustech.edu.cn)
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yu,James J.Q.. Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2020,22(7):4622-4634.
APA
Yu,James J.Q..(2020).Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,22(7),4622-4634.
MLA
Yu,James J.Q.."Sybil Attack Identification for Crowdsourced Navigation: A Self-Supervised Deep Learning Approach".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 22.7(2020):4622-4634.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。