中文版 | English
题名

Will you go where you search? A deep learning framework for estimating user search-and-go behavior

作者
通讯作者Chen,Quanjun
发表日期
2020
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号472页码:338-348
摘要
Every day, people are using search engines for different purposes such as research, shopping, or entertainment. Among the behaviors of search engine users, we are particularly interested in search-and-go behavior, which intuitively corresponds to a simple but challenging question, i.e., will users go where they search? Accurately estimating such behavior can be of great importance for Internet companies to recommend point-of-interest (POI), advertisement, and route, as well as for governments and public service operators like metro companies to conduct traffic monitoring, crowd management, and transportation scheduling. Therefore, in this study, we first collect search log data and GPS log data with linked and consistent user ID from Yahoo! Japan portal application installed in millions of smart-phones and tablets. Then we propose a framework including a complete data-processing procedure and an end-to-end deep learning model to predict whether a user will check-in the searched place or not. Specifically, as users’ daily activities are considered to have high correlation with their travel, eating, and recreation decision in the future (i.e., go or not), Deep Spatial–Temporal Interaction Network (DeepSTIN) is elaborately designed to automatically learn the sophisticated spatiotemporal interactions between mobility data and search query data. Experimental results based on the standard metrics demonstrate that our proposed framework can achieve satisfactory performances on multiple real-world search scenarios.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000761758600008
出版者
EI入藏号
20204909582520
EI主题词
Transportation routes ; Behavioral research ; Scheduling ; Smartphones ; Location based services ; Search engines ; Data handling ; Telecommunication services ; User profile ; Deep learning ; Learning systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Equipment:718.1 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Management:912.2 ; Social Sciences:971
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85097089559
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209712
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.The University of Tokyo,Tokyo,Japan
2.SUSTech-UTokyo Joint Research Center on Super Smart City,Southern University of Science and Technology,Shen Zhen,China
3.Yahoo Japan Corporation,Tokyo,Japan
推荐引用方式
GB/T 7714
Jiang,Renhe,Chen,Quanjun,Cai,Zekun,et al. Will you go where you search? A deep learning framework for estimating user search-and-go behavior[J]. NEUROCOMPUTING,2020,472:338-348.
APA
Jiang,Renhe.,Chen,Quanjun.,Cai,Zekun.,Fan,Zipei.,Song,Xuan.,...&Shibasaki,Ryosuke.(2020).Will you go where you search? A deep learning framework for estimating user search-and-go behavior.NEUROCOMPUTING,472,338-348.
MLA
Jiang,Renhe,et al."Will you go where you search? A deep learning framework for estimating user search-and-go behavior".NEUROCOMPUTING 472(2020):338-348.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Renhe]的文章
[Chen,Quanjun]的文章
[Cai,Zekun]的文章
百度学术
百度学术中相似的文章
[Jiang,Renhe]的文章
[Chen,Quanjun]的文章
[Cai,Zekun]的文章
必应学术
必应学术中相似的文章
[Jiang,Renhe]的文章
[Chen,Quanjun]的文章
[Cai,Zekun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。