中文版 | English
题名

A privacy-preserving protocol for continuous and dynamic data collection in IoT enabled mobile app recommendation system (MARS)

作者
通讯作者Hussain,Shahid
发表日期
2021-01-15
DOI
发表期刊
ISSN
1084-8045
EISSN
1095-8592
卷号174
摘要

User trust is an important factor in the success of recommendation systems, including Internet of Things (IoT)-based recommendation systems. However, such trust can be eroded in many different ways (e.g., unauthorized data modifications). Several privacy-preservation schemes have been designed for specific data and/or require strict assumptions (e.g., a private/secure communication channel between client-server and third-party authentication). However, these may limit their application in practice. Hence, in this paper we propose the Reversible Data Transform (RDT) algorithm based privacy-preserving data collection protocol. Our protocol allows us to achieve privacy preservation against beyond the scope processing and does not require a private channel or rely on a third-party authentication. Due to group formation, the disclosure probability of the internal disclosure attack will not be greater than 1/k. Similarly, the reversible privacy-preserving data mining approach protects beyond the scope processing. Findings from the experimentation demonstrates the utility of the proposed protocol and its potential to be deployed in a mobile app recommendation system.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China (NSFC)[61950410603]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Computer Science, Software Engineering
WOS记录号
WOS:000603355800007
出版者
EI入藏号
20205009613927
EI主题词
Authentication ; Internet protocols ; Privacy-preserving techniques ; Internet of things ; Data acquisition ; Data mining
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Communication, Equipment and Techniques:722.3 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85097345760
来源库
Scopus
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209761
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Sciences,COMSATS University Islamabad,Islamabad,Pakistan
2.Department of Computer Science,FAST National University of Computer and Emerging Sciences (NUCES),Karachi,Pakistan
3.Department of Computer and Information Sciences,Nothumbria University,Newcastle,United Kingdom
4.Department of Information Systems and Cyber Security,University of Texas at San Antonio,United States
5.Department of Computer and Information Science,University of Oregon,University,United States
6.Department of Computer Science and Engineering,Southern University of Science and Technology,Guangdong Sheng,1088 Xueyuan Ave, Nanshan Qu, Shenzhen Shi,518055,China
推荐引用方式
GB/T 7714
Beg,Saira,Anjum,Adeel,Ahmad,Mansoor,et al. A privacy-preserving protocol for continuous and dynamic data collection in IoT enabled mobile app recommendation system (MARS)[J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS,2021,174.
APA
Beg,Saira.,Anjum,Adeel.,Ahmad,Mansoor.,Hussain,Shahid.,Ahmad,Ghufran.,...&Choo,Kim Kwang Raymond.(2021).A privacy-preserving protocol for continuous and dynamic data collection in IoT enabled mobile app recommendation system (MARS).JOURNAL OF NETWORK AND COMPUTER APPLICATIONS,174.
MLA
Beg,Saira,et al."A privacy-preserving protocol for continuous and dynamic data collection in IoT enabled mobile app recommendation system (MARS)".JOURNAL OF NETWORK AND COMPUTER APPLICATIONS 174(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Beg,Saira]的文章
[Anjum,Adeel]的文章
[Ahmad,Mansoor]的文章
百度学术
百度学术中相似的文章
[Beg,Saira]的文章
[Anjum,Adeel]的文章
[Ahmad,Mansoor]的文章
必应学术
必应学术中相似的文章
[Beg,Saira]的文章
[Anjum,Adeel]的文章
[Ahmad,Mansoor]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。