题名 | Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor |
作者 | |
通讯作者 | Pan,Feng; Xu,Baomin; Gogotsi,Yury |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 1614-6832
|
EISSN | 1614-6840
|
卷号 | 11期号:4 |
摘要 | The lengthened ion pathway in restacked 2D materials greatly limits the electrochemical performance of practically dense film electrodes (mass loading >10 mg cm). Typical strategies such as the insertion of nanomaterials and 3D-structure design is expected to reduce the volumetric capacitance of TiCT electrodes, diminishing the dominating advantage of TiCT over other electrode materials. Here, a novel, facile, and controllable HSO oxidation method is developed for alleviating the restacking issue of TiCT film with few electrochemically inactive side-products such as TiO. A hierarchical ion path “highway” in TiCT film is fabricated with porous structure, atomic-level increased interlayer spacing, and reduced flake size (through probe-sonication). As a result, ultra-high rate performance is obtained with high volumetric capacitance. For a ≈1.1 µm thick TiCT film, capacitance retention of 64% is obtained (208 F g/756 F cm) when the scan rate is increased from 5 to 10,000 mV s. Even at higher mass loadings exceeding 12 mg cm (48 µm thickness), the rate capability is still comparable to unoptimized TiCT electrodes with low mass loading (1 mg cm). Consequently, a high areal capacitance of ≈3.2 F cm is achieved for pathway-optimized thick TiCT film, which is of great significance for practical applications. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | University of Electronic Science and Technology of China[A1098531023601243]
; National Science Foundation Graduate Research Fellowship[DGE-1646737]
; Fundamental Research (Discipline Arrangement) Project from Shenzhen Science and Technology Innovation Committee[JCYJ20170412154554048]
; Peacock Team Project from Shenzhen Science and Technology Innovation Committee[KQTD2015033110182370]
|
WOS研究方向 | Chemistry
; Energy & Fuels
; Materials Science
; Physics
|
WOS类目 | Chemistry, Physical
; Energy & Fuels
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000598278900001
|
出版者 | |
EI入藏号 | 20205009621108
|
EI主题词 | Electrochemical electrodes
; Titanium dioxide
; Ions
; Capacitance
; Titanium carbide
|
EI分类号 | Electricity: Basic Concepts and Phenomena:701.1
; Electric Components:704.1
; Inorganic Compounds:804.2
|
Scopus记录号 | 2-s2.0-85097508341
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:181
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/209816 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering,Drexel University,Philadelphia,19104,United States 2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.School of Advanced Materials,Peking University Shenzhen Graduate School,Peking University,Shenzhen,518055,China 4.State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu,610054,China 5.School of Chemical and Biomedical Engineering,Nanyang Technological University,Singapore,637459,Singapore |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Tang,Jun,Mathis,Tyler,Zhong,Xiongwei,et al. Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor[J]. Advanced Energy Materials,2020,11(4).
|
APA |
Tang,Jun.,Mathis,Tyler.,Zhong,Xiongwei.,Xiao,Xu.,Wang,Hao.,...&Gogotsi,Yury.(2020).Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor.Advanced Energy Materials,11(4).
|
MLA |
Tang,Jun,et al."Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor".Advanced Energy Materials 11.4(2020).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论