中文版 | English
题名

Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor

作者
通讯作者Pan,Feng; Xu,Baomin; Gogotsi,Yury
发表日期
2020
DOI
发表期刊
ISSN
1614-6832
EISSN
1614-6840
卷号11期号:4
摘要

The lengthened ion pathway in restacked 2D materials greatly limits the electrochemical performance of practically dense film electrodes (mass loading >10 mg cm). Typical strategies such as the insertion of nanomaterials and 3D-structure design is expected to reduce the volumetric capacitance of TiCT electrodes, diminishing the dominating advantage of TiCT over other electrode materials. Here, a novel, facile, and controllable HSO oxidation method is developed for alleviating the restacking issue of TiCT film with few electrochemically inactive side-products such as TiO. A hierarchical ion path “highway” in TiCT film is fabricated with porous structure, atomic-level increased interlayer spacing, and reduced flake size (through probe-sonication). As a result, ultra-high rate performance is obtained with high volumetric capacitance. For a ≈1.1 µm thick TiCT film, capacitance retention of 64% is obtained (208 F g/756 F cm) when the scan rate is increased from 5 to 10,000 mV s. Even at higher mass loadings exceeding 12 mg cm (48 µm thickness), the rate capability is still comparable to unoptimized TiCT electrodes with low mass loading (1 mg cm). Consequently, a high areal capacitance of ≈3.2 F cm is achieved for pathway-optimized thick TiCT film, which is of great significance for practical applications.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
University of Electronic Science and Technology of China[A1098531023601243] ; National Science Foundation Graduate Research Fellowship[DGE-1646737] ; Fundamental Research (Discipline Arrangement) Project from Shenzhen Science and Technology Innovation Committee[JCYJ20170412154554048] ; Peacock Team Project from Shenzhen Science and Technology Innovation Committee[KQTD2015033110182370]
WOS研究方向
Chemistry ; Energy & Fuels ; Materials Science ; Physics
WOS类目
Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:000598278900001
出版者
EI入藏号
20205009621108
EI主题词
Electrochemical electrodes ; Titanium dioxide ; Ions ; Capacitance ; Titanium carbide
EI分类号
Electricity: Basic Concepts and Phenomena:701.1 ; Electric Components:704.1 ; Inorganic Compounds:804.2
Scopus记录号
2-s2.0-85097508341
来源库
Scopus
引用统计
被引频次[WOS]:181
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209816
专题工学院_材料科学与工程系
作者单位
1.A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering,Drexel University,Philadelphia,19104,United States
2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.School of Advanced Materials,Peking University Shenzhen Graduate School,Peking University,Shenzhen,518055,China
4.State Key Laboratory of Electronic Thin Film and Integrated Devices School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu,610054,China
5.School of Chemical and Biomedical Engineering,Nanyang Technological University,Singapore,637459,Singapore
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
推荐引用方式
GB/T 7714
Tang,Jun,Mathis,Tyler,Zhong,Xiongwei,et al. Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor[J]. Advanced Energy Materials,2020,11(4).
APA
Tang,Jun.,Mathis,Tyler.,Zhong,Xiongwei.,Xiao,Xu.,Wang,Hao.,...&Gogotsi,Yury.(2020).Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor.Advanced Energy Materials,11(4).
MLA
Tang,Jun,et al."Optimizing Ion Pathway in Titanium Carbide MXene for Practical High-Rate Supercapacitor".Advanced Energy Materials 11.4(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tang,Jun]的文章
[Mathis,Tyler]的文章
[Zhong,Xiongwei]的文章
百度学术
百度学术中相似的文章
[Tang,Jun]的文章
[Mathis,Tyler]的文章
[Zhong,Xiongwei]的文章
必应学术
必应学术中相似的文章
[Tang,Jun]的文章
[Mathis,Tyler]的文章
[Zhong,Xiongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。