中文版 | English
题名

Enabling Deep Residual Networks for Weakly Supervised Object Detection

作者
通讯作者Ji,Rongrong
DOI
发表日期
2020
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12353 LNCS
页码
118-136
摘要
Weakly supervised object detection (WSOD) has attracted extensive research attention due to its great flexibility of exploiting large-scale image-level annotation for detector training. Whilst deep residual networks such as ResNet and DenseNet have become the standard backbones for many computer vision tasks, the cutting-edge WSOD methods still rely on plain networks, e.g., VGG, as backbones. It is indeed not trivial to employ deep residual networks for WSOD, which even shows significant deterioration of detection accuracy and non-convergence. In this paper, we discover the intrinsic root with sophisticated analysis and propose a sequence of design principles to take full advantages of deep residual learning for WSOD from the perspectives of adding redundancy, improving robustness and aligning features. First, a redundant adaptation neck is key for effective object instance localization and discriminative feature learning. Second, small-kernel convolutions and MaxPool down-samplings help improve the robustness of information flow, which gives finer object boundaries and make the detector more sensitivity to small objects. Third, dilated convolution is essential to align the proposal features and exploit diverse local information by extracting high-resolution feature maps. Extensive experiments show that the proposed principles enable deep residual networks to establishes new state-of-the-arts on PASCAL VOC and MS COCO.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20205009617791
EI主题词
Arts computing ; Object recognition ; Deep learning ; Deterioration ; Computer vision ; Convolution
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2 ; Materials Science:951
Scopus记录号
2-s2.0-85097395636
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209826
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Media Analytics and Computing Lab,Department of Artificial Intelligence,School of Informatics,Xiamen University,Xiamen,361005,China
2.Pinterest,San Francisco,United States
3.CSE,Southern University of Science and Technology,Shenzhen,China
4.Tencent Youtu Lab,Tencent Technology (Shanghai) Co.,Ltd.,Shanghai,China
推荐引用方式
GB/T 7714
Shen,Yunhang,Ji,Rongrong,Wang,Yan,et al. Enabling Deep Residual Networks for Weakly Supervised Object Detection[C],2020:118-136.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Wang,Yan]的文章
百度学术
百度学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Wang,Yan]的文章
必应学术
必应学术中相似的文章
[Shen,Yunhang]的文章
[Ji,Rongrong]的文章
[Wang,Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。