中文版 | English
题名

Super-resolution and inpainting with degraded and upgraded generative adversarial networks

作者
通讯作者Zheng,Feng
发表日期
2020
ISSN
1045-0823
会议录名称
卷号
2021-January
页码
645-651
摘要
Image super-resolution (SR) and image inpainting are two topical problems in medical image processing. Existing methods for solving the problems are either tailored to recovering a high-resolution version of the low-resolution image or focus on filling missing values, thus inevitably giving rise to poor performance when the acquisitions suffer from multiple degradations. In this paper, we explore the possibility of super-resolving and inpainting images to handle multiple degradations and therefore improve their usability. We construct a unified and scalable framework to overcome the drawbacks of propagated errors caused by independent learning. We additionally provide improvements over previously proposed super-resolution approaches by modeling image degradation directly from data observations rather than bicubic downsampling. To this end, we propose HLH-GAN, which includes a high-to-low (H-L) GAN together with a low-to-high (L-H) GAN in a cyclic pipeline for solving the medical image degradation problem. Our comparative evaluation demonstrates that the effectiveness of the proposed method on different brain MRI datasets. In addition, our method outperforms many existing super-resolution and inpainting approaches.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20205009609686
EI主题词
Medical imaging ; Medical problems ; Image enhancement ; Magnetic resonance imaging ; Optical resolving power
EI分类号
Biomedical Engineering:461.1 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Artificial Intelligence:723.4 ; Light/Optics:741.1 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85097340315
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/209834
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Malong Technologies,
2.Shenzhen Malong Artificial Intelligence Research Center,China
3.Depatment of Computer Science and Technology,Southern University of Science and Technology,
4.Research Institute of Trustworthy Autonomous Systems,
5.Purdue University,United States
6.Inception Institute of Artificial Intelligence,
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Huang,Yawen,Zheng,Feng,Wang,Danyang,et al. Super-resolution and inpainting with degraded and upgraded generative adversarial networks[C],2020:645-651.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Yawen]的文章
[Zheng,Feng]的文章
[Wang,Danyang]的文章
百度学术
百度学术中相似的文章
[Huang,Yawen]的文章
[Zheng,Feng]的文章
[Wang,Danyang]的文章
必应学术
必应学术中相似的文章
[Huang,Yawen]的文章
[Zheng,Feng]的文章
[Wang,Danyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。