中文版 | English
题名

Alzheimer's Disease Classification With a Cascade Neural Network

作者
通讯作者Guo, Yi; Jiang, Xin; Hu, Xiping
发表日期
2020-11-03
DOI
发表期刊
ISSN
2296-2565
EISSN
2296-2565
卷号8
摘要
Classification of Alzheimer's Disease (AD) has been becoming a hot issue along with the rapidly increasing number of patients. This task remains tremendously challenging due to the limited data and the difficulties in detecting mild cognitive impairment (MCI). Existing methods use gait [or EEG (electroencephalogram)] data only to tackle this task. Although the gait data acquisition procedure is cheap and simple, the methods relying on gait data often fail to detect the slight difference between MCI and AD. The methods that use EEG data can detect the difference more precisely, but collecting EEG data from both HC (health controls) and patients is very time-consuming. More critically, these methods often convert EEG records into the frequency domain and thus inevitably lose the spatial and temporal information, which is essential to capture the connectivity and synchronization among different brain regions. This paper proposes a cascade neural network with two steps to achieve a faster and more accurate AD classification by exploiting gait and EEG data simultaneously. In the first step, we propose attention-based spatial temporal graph convolutional networks to extract the features from the skeleton sequences (i.e., gait) captured by Kinect (a commonly used sensor) to distinguish between HC and patients. In the second step, we propose spatial temporal convolutional networks to fully exploit the spatial and temporal information of EEG data and classify the patients into MCI or AD eventually. We collect gait and EEG data from 35 cognitively health controls, 35 MCI, and 17 AD patients to evaluate our proposed method. Experimental results show that our method significantly outperforms other AD diagnosis methods (91.07 vs. 68.18%) in the three-way AD classification task (HC, MCI, and AD). Moreover, we empirically found that the lower body and right upper limb are more important for the early diagnosis of AD than other body parts. We believe this interesting finding can be helpful for clinical researches.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Science and Technology Planning Project of Shenzhen Municipality[JCYJ20170818111012390] ; Sanming Project of Medicine in Shenzhen[SYJY201905][SYJY201906] ; Shenzhen Health Committee Project[SZXJ2017034]
WOS研究方向
Public, Environmental & Occupational Health
WOS类目
Public, Environmental & Occupational Health
WOS记录号
WOS:000589682400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210482
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Dept Neurol, Shenzhen Peoples Hosp, Affiliated Hosp 1,Southern Univ Sci & Technol,Sec, Shenzhen, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
3.Jinan Univ, Affiliated Hosp 1, Guangzhou, Peoples R China
4.Jinan Univ, Dept Geriatr, Shenzhen Peoples Hosp, Affiliated Hosp 1,Southern Univ Sci & Technol,Sec, Shenzhen, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
You, Zeng,Zeng, Runhao,Lan, Xiaoyong,et al. Alzheimer's Disease Classification With a Cascade Neural Network[J]. Frontiers in Public Health,2020,8.
APA
You, Zeng.,Zeng, Runhao.,Lan, Xiaoyong.,Ren, Huixia.,You, Zhiyang.,...&Hu, Xiping.(2020).Alzheimer's Disease Classification With a Cascade Neural Network.Frontiers in Public Health,8.
MLA
You, Zeng,et al."Alzheimer's Disease Classification With a Cascade Neural Network".Frontiers in Public Health 8(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[You, Zeng]的文章
[Zeng, Runhao]的文章
[Lan, Xiaoyong]的文章
百度学术
百度学术中相似的文章
[You, Zeng]的文章
[Zeng, Runhao]的文章
[Lan, Xiaoyong]的文章
必应学术
必应学术中相似的文章
[You, Zeng]的文章
[Zeng, Runhao]的文章
[Lan, Xiaoyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。