中文版 | English
题名

Finite-Time Analysis of Decentralized Temporal-Difference Learning with Linear Function Approximation

作者
通讯作者Sun, Jun
发表日期
2020
会议录名称
卷号
108
出版地
75 ARLINGTON ST, STE 300, BOSTON, MA 02116-3936 USA
出版者
摘要
Motivated by the emerging use of multi-agent reinforcement learning (MARL) in various engineering applications, we investigate the policy evaluation problem in a fully decentralized setting, using temporal-difference (TD) learning with linear function approximation to handle large state spaces in practice. The goal of a group of agents is to collaboratively learn the value function of a given policy from locally private rewards observed in a shared environment, through exchanging local estimates with neighbors. Despite their simplicity and widespread use, our theoretical understanding of such decentralized TD learning algorithms remains limited. Existing results were obtained based on i.i.d. data samples, or by imposing an 'additional' projection step to control the 'gradient' bias incurred by the Markovian observations. In this paper, we provide a finite-sample analysis of the fully decentralized TD(0) learning under both i.i.d. as well as Markovian samples, and prove that all local estimates converge linearly to a neighborhood of the optimum. The resultant error bounds are the first of its type-in the sense that they hold under the most practical assumptions - which is made possible by means of a novel multi-step Lyapunov analysis.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
NSFC[61873118][61673347][U1609214][61751205] ; Dept. of Science and Technology of Guangdong Province[2018A050506003] ; NSF[1711471][1901134] ; Key R&D Program of Zhejiang Province[2019C01050]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Statistics & Probability
WOS记录号
WOS:000559931303034
来源库
Web of Science
引用统计
被引频次[WOS]:27
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210520
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
2.Univ Minnesota, Minneapolis, MN 55455 USA
3.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Sun, Jun,Wang, Gang,Giannakis, Georgios B.,et al. Finite-Time Analysis of Decentralized Temporal-Difference Learning with Linear Function Approximation[C]. 75 ARLINGTON ST, STE 300, BOSTON, MA 02116-3936 USA:ADDISON-WESLEY PUBL CO,2020.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Jun]的文章
[Wang, Gang]的文章
[Giannakis, Georgios B.]的文章
百度学术
百度学术中相似的文章
[Sun, Jun]的文章
[Wang, Gang]的文章
[Giannakis, Georgios B.]的文章
必应学术
必应学术中相似的文章
[Sun, Jun]的文章
[Wang, Gang]的文章
[Giannakis, Georgios B.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。