中文版 | English
题名

Modeling study of sandstone permeability under true triaxial stress based on backpropagation neural network, genetic programming, and multiple regression analysis

作者
通讯作者Liu,Chao
发表日期
2021-02-01
DOI
发表期刊
ISSN
1875-5100
EISSN
2212-3865
卷号86
摘要
Permeability evolution of sandstone is of great significance in the development of tight sandstone gas reservoirs. Traditional laboratory tests have the disadvantages of high cost and long testing time. Therefore, the present study employed use artificial intelligence systems, i.e., backpropagation neural network (BPNN), genetic programming (GP), and multiple regression analysis to construct prediction models of sandstone permeability based on the coupling effect of true triaxial stress field and pore pressure. The results showed that the permeability prediction obtained from the systems fit well with the experimental data, and evidenced that permeability increased with pore pressure and decreased with increase in principal stress. Sensitivity analysis showed that the pore pressure has the greatest influence on sandstone permeability under different true triaxial stress. The effect of anisotropic principal stress on permeability exhibited σ > σ > σ under fixed pore pressure. Further assessment based on a combination of five evaluation indexes showed that the prediction accuracy of the BPNN model was better.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[51874053] ; Graduate Research and Innovation Foundation of Chongqing, China["CYS19013","CYB19046","CYB 19045"]
WOS研究方向
Energy & Fuels ; Engineering
WOS类目
Energy & Fuels ; Engineering, Chemical
WOS记录号
WOS:000606642600001
出版者
EI入藏号
20205109658933
EI主题词
Sandstone ; Neural networks ; Petroleum reservoir engineering ; Backpropagation ; Sensitivity analysis ; Forecasting ; Genetic algorithms ; Regression analysis ; Genetic programming
EI分类号
Minerals:482.2 ; Soils and Soil Mechanics:483.1 ; Petroleum Deposits : Development Operations:512.1.2 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Mathematics:921 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85097771042
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210869
专题理学院_地球与空间科学系
作者单位
1.State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing,400030,China
2.School of Resources and Safety Engineering,Chongqing University,Chongqing,400030,China
3.State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Xuzhou,221116,China
4.School of Mechanics and Civil Engineerig,China University of Mining and Technology,Xuzhou,221116,China
5.Yanzhou Coal Mining Company Limited Jining No.3 Coal Mine,Jining,272000,China
6.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Yu,Beichen,Zhao,Honggang,Tian,Jiabao,et al. Modeling study of sandstone permeability under true triaxial stress based on backpropagation neural network, genetic programming, and multiple regression analysis[J]. Journal of Natural Gas Science and Engineering,2021,86.
APA
Yu,Beichen.,Zhao,Honggang.,Tian,Jiabao.,Liu,Chao.,Song,Zhenlong.,...&Li,Minghui.(2021).Modeling study of sandstone permeability under true triaxial stress based on backpropagation neural network, genetic programming, and multiple regression analysis.Journal of Natural Gas Science and Engineering,86.
MLA
Yu,Beichen,et al."Modeling study of sandstone permeability under true triaxial stress based on backpropagation neural network, genetic programming, and multiple regression analysis".Journal of Natural Gas Science and Engineering 86(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,Beichen]的文章
[Zhao,Honggang]的文章
[Tian,Jiabao]的文章
百度学术
百度学术中相似的文章
[Yu,Beichen]的文章
[Zhao,Honggang]的文章
[Tian,Jiabao]的文章
必应学术
必应学术中相似的文章
[Yu,Beichen]的文章
[Zhao,Honggang]的文章
[Tian,Jiabao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。