中文版 | English
题名

LaeNet: A Novel Lightweight Multitask CNN for Automatically Extracting Lake Area and Shoreline from Remote Sensing Images

作者
通讯作者Ran, Jiangjun
发表日期
2021
DOI
发表期刊
EISSN
2072-4292
卷号13期号:1页码:1-21
摘要
Variations of lake area and shoreline can indicate hydrological and climatic changes effectively. Accordingly, how to automatically and simultaneously extract lake area and shoreline from remote sensing images attracts our attention. In this paper, we formulate lake area and shoreline extraction as a multitask learning problem. Different from existing models that take the deep and complex network architecture as the backbone to extract feature maps, we present LaeNet-a novel end-to-end lightweight multitask fully CNN with no-downsampling to automatically extract lake area and shoreline from remote sensing images. Landsat-8 images over Selenco and the vicinity in the Tibetan Plateau are utilized to train and evaluate our model. Experimental results over the testing image patches achieve an Accuracy of 0.9962, Precision of 0.9912, Recall of 0.9982, F1-score of 0.9941, and mIoU of 0.9879, which align with the mainstream semantic segmentation models (UNet, DeepLabV3+, etc.) or even better. Especially, the running time of each epoch and the size of our model are only 6 s and 0.047 megabytes, which achieve a significant reduction compared to the other models. Finally, we conducted fieldwork to collect the in-situ shoreline position for one typical part of lake Selenco, in order to further evaluate the performance of our model. The validation indicates high accuracy in our results (DRMSE: 30.84 m, DMAE: 22.49 m, DSTD: 21.11 m), only about one pixel deviation for Landsat-8 images. LaeNet can be expanded potentially to the tasks of area segmentation and edge extraction in other application fields.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41974094,41874004]
WOS研究方向
Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:000606656500001
出版者
EI入藏号
20210209743451
EI主题词
Complex networks ; Extraction ; Image segmentation ; Lakes ; Network architecture ; Semantics
EI分类号
Computer Systems and Equipment:722 ; Chemical Operations:802.3
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210874
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
2.Nanyang Inst Technol, Sch Comp & Software, Nanyang 473004, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen 518055, Peoples R China
4.Chinese Univ Hong Kong, Fac Sci, Earth Syst Sci Programme, Hong Kong, Peoples R China
5.Vultus AB, Lilla Fiskaregatan 19, S-22222 Lund, Sweden
6.Guangzhou Marine Geol Survey, Guangzhou 510075, Peoples R China
7.Southern Marine Sci & Engn Guangdong Lab, Guangzhou 511458, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Liu, Wei,Chen, Xingyu,Ran, Jiangjun,et al. LaeNet: A Novel Lightweight Multitask CNN for Automatically Extracting Lake Area and Shoreline from Remote Sensing Images[J]. REMOTE SENSING,2021,13(1):1-21.
APA
Liu, Wei.,Chen, Xingyu.,Ran, Jiangjun.,Liu, Lin.,Wang, Qiang.,...&Li, Gang.(2021).LaeNet: A Novel Lightweight Multitask CNN for Automatically Extracting Lake Area and Shoreline from Remote Sensing Images.REMOTE SENSING,13(1),1-21.
MLA
Liu, Wei,et al."LaeNet: A Novel Lightweight Multitask CNN for Automatically Extracting Lake Area and Shoreline from Remote Sensing Images".REMOTE SENSING 13.1(2021):1-21.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Wei]的文章
[Chen, Xingyu]的文章
[Ran, Jiangjun]的文章
百度学术
百度学术中相似的文章
[Liu, Wei]的文章
[Chen, Xingyu]的文章
[Ran, Jiangjun]的文章
必应学术
必应学术中相似的文章
[Liu, Wei]的文章
[Chen, Xingyu]的文章
[Ran, Jiangjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。