中文版 | English
题名

Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach

作者
通讯作者Jia,Youwei
发表日期
2020-12-01
DOI
发表期刊
ISSN
2352-4847
EISSN
2352-4847
卷号6页码:1099-1105
摘要
Machine learning approaches have diverse applications in forecasting electrical energy consumption using smart meter data. Various classification techniques and clustering methods analyze smart meter data for accurately forecasting the electrical appliance consumption and peak demand. Electrical appliance forecasting and peak demand forecasting play a vital and key role in planning, maintenance and automation development for electrical power system. However, there is always a variation between electrical appliance consumption and appliance energy demand due to certain parameters including losses in lines and appliance and mismanagement of appliance energy demand. Detail scrutiny of smart meter data is required to identify the decisive attributes and major cause of variation between electrical appliance consumption and customers’ peak demand. This paper proposed a hybrid method based on Machine learning for forecasting appliance consumption and peak demand. We have deployed faster k-medoids clustering, support vector machine and artificial neural network for forecasting appliance consumption and customers’ peak demand. The proposed algorithm achieves 99.2% accuracy in forecasting electrical appliance consumption which is much better compared to state-of-the-art in same field. Experimental results validate the effectiveness of the proposed method in forecasting the electrical appliance consumption using smart meter data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Basic and Applied Basic Research Fund, China[2019A1515111173] ; High-level University Fund, China[G02236002] ; Young Talent Program[2018KQNCX223]
WOS研究方向
Energy & Fuels
WOS类目
Energy & Fuels
WOS记录号
WOS:000604392100149
出版者
EI入藏号
20205209695161
EI主题词
Electric power systems ; Energy utilization ; Support vector machines ; Energy management ; Neural networks ; Smart meters
EI分类号
Energy Management and Conversion:525 ; Energy Utilization:525.3 ; Electric Power Systems:706.1 ; Computer Software, Data Handling and Applications:723 ; Electric and Electronic Measuring Instruments:942
Scopus记录号
2-s2.0-85098223749
来源库
Scopus
引用统计
被引频次[WOS]:32
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210918
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.University Key Laboratory of Advanced Wireless Communications of Guangdong Province,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Electrical and Computer Engineering,Air University,Islamabad,Pakistan
第一作者单位电子与电气工程系;  南方科技大学
通讯作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Haq,Ejaz Ul,Lyu,Xue,Jia,Youwei,et al. Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach[J]. Energy Reports,2020,6:1099-1105.
APA
Haq,Ejaz Ul,Lyu,Xue,Jia,Youwei,Hua,Mengyuan,&Ahmad,Fiaz.(2020).Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach.Energy Reports,6,1099-1105.
MLA
Haq,Ejaz Ul,et al."Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach".Energy Reports 6(2020):1099-1105.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haq,Ejaz Ul]的文章
[Lyu,Xue]的文章
[Jia,Youwei]的文章
百度学术
百度学术中相似的文章
[Haq,Ejaz Ul]的文章
[Lyu,Xue]的文章
[Jia,Youwei]的文章
必应学术
必应学术中相似的文章
[Haq,Ejaz Ul]的文章
[Lyu,Xue]的文章
[Jia,Youwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。