题名 | A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images |
作者 | |
通讯作者 | Liu,Jiang |
发表日期 | 2020-10-11
|
DOI | |
发表期刊 | |
ISSN | 2168-2216
|
EISSN | 2168-2232
|
卷号 | 2020-October页码:662-668 |
摘要 | Nuclear cataract is one of the most common types of cataract. In the recent, ophthalmologists are increasingly using anterior segment optical coherence tomography (AS-OCT) images to diagnose many ocular diseases including cataract. The relationship between cataract and the lens opacity based on AS-OCT images has been being studied in clinical pioneer research. However, using AS-OCT images to classify cataract automatically based on computer-aided diagnosis (CAD) technique has not been seriously studied. This paper proposes a novel Convolutional Neural Network (CNN) model named GraNet for nuclear cataract classification based on AS-OCT images. In the GraNet, we introduce a grading block to learn high-level feature representations based on the pointwise convolution method. To further improve the classification performance, we propose a simple and efficient cross-training method is comprised of focal loss and cross-entropy loss. Extensive experiments are conducted on the AS-OCT image dataset, the results demonstrate that the proposed methods achieve better nuclear cataract classification results than baselines. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20210209743158
|
EI主题词 | Classification (of information)
; Clinical research
; Computer aided diagnosis
; Convolution
; Convolutional neural networks
; Grading
; Image classification
; Image segmentation
; Learning systems
; Optical tomography
; Tomography
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory and Signal Processing:716.1
; Optical Devices and Systems:741.3
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85098884614
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210927 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China 2.Tomey Corporation,Japan 3.Sun Yat-sen University,Zhongshan Ophthalmic Center,Guangzhou,China 4.Harbin Institute of Technology,Harbin,China 5.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Xiaoqing,Xiao,Zunjie,Higashita,Risa,et al. A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images[J]. IEEE Transactions on Systems Man Cybernetics-Systems,2020,2020-October:662-668.
|
APA |
Zhang,Xiaoqing.,Xiao,Zunjie.,Higashita,Risa.,Chen,Wan.,Yuan,Jin.,...&Liu,Jiang.(2020).A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images.IEEE Transactions on Systems Man Cybernetics-Systems,2020-October,662-668.
|
MLA |
Zhang,Xiaoqing,et al."A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images".IEEE Transactions on Systems Man Cybernetics-Systems 2020-October(2020):662-668.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
A_Novel_Deep_Learnin(423KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论