中文版 | English
题名

A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images

作者
通讯作者Liu,Jiang
发表日期
2020-10-11
DOI
发表期刊
ISSN
2168-2216
EISSN
2168-2232
卷号2020-October页码:662-668
摘要

Nuclear cataract is one of the most common types of cataract. In the recent, ophthalmologists are increasingly using anterior segment optical coherence tomography (AS-OCT) images to diagnose many ocular diseases including cataract. The relationship between cataract and the lens opacity based on AS-OCT images has been being studied in clinical pioneer research. However, using AS-OCT images to classify cataract automatically based on computer-aided diagnosis (CAD) technique has not been seriously studied. This paper proposes a novel Convolutional Neural Network (CNN) model named GraNet for nuclear cataract classification based on AS-OCT images. In the GraNet, we introduce a grading block to learn high-level feature representations based on the pointwise convolution method. To further improve the classification performance, we propose a simple and efficient cross-training method is comprised of focal loss and cross-entropy loss. Extensive experiments are conducted on the AS-OCT image dataset, the results demonstrate that the proposed methods achieve better nuclear cataract classification results than baselines.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20210209743158
EI主题词
Classification (of information) ; Clinical research ; Computer aided diagnosis ; Convolution ; Convolutional neural networks ; Grading ; Image classification ; Image segmentation ; Learning systems ; Optical tomography ; Tomography
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85098884614
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210927
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
2.Tomey Corporation,Japan
3.Sun Yat-sen University,Zhongshan Ophthalmic Center,Guangzhou,China
4.Harbin Institute of Technology,Harbin,China
5.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Xiaoqing,Xiao,Zunjie,Higashita,Risa,et al. A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images[J]. IEEE Transactions on Systems Man Cybernetics-Systems,2020,2020-October:662-668.
APA
Zhang,Xiaoqing.,Xiao,Zunjie.,Higashita,Risa.,Chen,Wan.,Yuan,Jin.,...&Liu,Jiang.(2020).A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images.IEEE Transactions on Systems Man Cybernetics-Systems,2020-October,662-668.
MLA
Zhang,Xiaoqing,et al."A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images".IEEE Transactions on Systems Man Cybernetics-Systems 2020-October(2020):662-668.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A_Novel_Deep_Learnin(423KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
百度学术
百度学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
必应学术
必应学术中相似的文章
[Zhang,Xiaoqing]的文章
[Xiao,Zunjie]的文章
[Higashita,Risa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。