题名 | Numerical Analysis on Optimal Distributions of Solutions for Hypervolume Maximization |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2020-10-11
|
会议名称 | 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 2168-2216
|
EISSN | 2168-2232
|
ISBN | 978-1-7281-8527-9
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 1103-1110
|
会议日期 | 11-14 Oct. 2020
|
会议地点 | Toronto, ON, Canada
|
摘要 | In the evolutionary multi-objective optimization (EMO) community, hypervolume (HV) has been frequently used to evaluate the performance of EMO algorithms. The HV is a Pareto compliant indicator which can simultaneously evaluate both the convergence of solutions to the Pareto front and their diversity. No other Pareto compliant indicator is known. In the EMO community, it is implicitly assumed that a set of uniformly distributed solutions over the entire Pareto front including its boundary has the best HV value. This is true for a linear Pareto front of a two-objective problem when a reference point for HV calculation is not too close to the Pareto front. In this paper, we numerically examine this issue for three-objective problems. We perform computational experiments to search for the optimal distribution of a small number of solutions for HV maximization. This is to visually explain the characteristic features of the optimal distribution. Our experimental results clearly show that a set of uniformly distributed solutions is not always optimal for HV maximization. It is also shown that the optimal distribution for HV maximization is often inconsistent with our intuition. For example, a set of ten solutions systematically generated by Das and Dennis method is not optimal. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210209742855
|
EI主题词 | Evolutionary algorithms
|
EI分类号 | Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85098859346
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9283265 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210928 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ishibuchi,Hisao,Pang,Lie Meng,Shang,Ke. Numerical Analysis on Optimal Distributions of Solutions for Hypervolume Maximization[C],2020:1103-1110.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Numerical_Analysis_o(2160KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论