题名 | Population Size Specification for Fair Comparison of Multi-objective Evolutionary Algorithms |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2020-10-11
|
会议名称 | 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-7281-8527-9
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 1095-1102
|
会议日期 | 11-14 Oct. 2020
|
会议地点 | Toronto, ON, Canada
|
摘要 | In general, performance comparison results of optimization algorithms depend on the parameter specifications in each algorithm. For fair comparison, it may be needed to use the best specifications for each algorithm instead of using the same specifications for all algorithms. This is because each algorithm has its best specifications. However, in the evolutionary multi-objective optimization (EMO) field, performance comparison has usually been performed under the same parameter specifications for all algorithms. Especially, the same population size has always been used. In this paper, we discuss this practice from a viewpoint of fair comparison of EMO algorithms. First, we demonstrate that performance comparison results depend on the population size. Next, we explain a new trend of performance comparison where each algorithm is evaluated by selecting a pre-specified number of solutions from the examined solutions (i.e., by selecting a solution subset with a pre-specified size). Then, we discuss the selected subset size specification. Through computational experiments, we show that performance comparison results do not strongly depend on the selected subset size while they depend on the population size. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210209743140
|
EI主题词 | Multiobjective optimization
; Parameter estimation
; Population statistics
; Specifications
|
EI分类号 | Codes and Standards:902.2
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85098856352
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9282850 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210929 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ishibuchi,Hisao,Pang,Lie Meng,Shang,Ke. Population Size Specification for Fair Comparison of Multi-objective Evolutionary Algorithms[C],2020:1095-1102.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Population_Size_Spec(1382KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论