题名 | Parallel Implementation of MOEA/D with Parallel Weight Vectors for Feature Selection |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2020-10-11
|
会议名称 | 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-7281-8527-9
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 1524-1531
|
会议日期 | 11-14 Oct. 2020
|
会议地点 | Toronto, ON, Canada
|
摘要 | In machine learning field, feature selection can be treated as a bi-objective optimization problem. It is reported that a decomposition-based evolutionary multi-objective optimization algorithm (i.e., MOEA/D-STAT) has good diversity performance when coping with feature selection. However, feature selection is also a time-consuming problem considering a large dataset it involves. The computation time can be easily reduced by introducing the parallelization into MOEA/D-STAT, thanks to the decomposition idea of MOEA/D. To the best of our knowledge, this is the first attempt to implement the parallelization of MOEA/D-STAT for feature selection. In this paper, we consider both master-slave models and island models, which are two different approaches of parallelization. In the master-slave models, different offspring assignment mechanisms are considered. In the island models, different island size specification mechanisms are examined. Our experimental results show that the master-slave models can achieve higher speedup and better performance than the island models. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210209742862
|
EI主题词 | Evolutionary algorithms
; Large dataset
; Multiobjective optimization
|
EI分类号 | Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85098851830
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9283272 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210930 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Liao,Weiduo,Ishibuchi,Hisao,Meng Pang,Lie,et al. Parallel Implementation of MOEA/D with Parallel Weight Vectors for Feature Selection[C],2020:1524-1531.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
liao2020.pdf(640KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论