中文版 | English
题名

Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms

作者
通讯作者Wang, Fei
DOI
发表日期
2020
会议名称
IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)
ISSN
2474-3747
EISSN
2474-3755
ISBN
978-1-7281-7231-6
会议录名称
页码
295-300
会议日期
SEP 27-30, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this work, a facile method is proposed to monitor the freshness of meat and fruits by combining a gas sensor array with machine learning algorithms, where the sensor array consists of four commercial metal oxide-based gas sensors. Back-propagation neural net cork (BPNN) is used for gas classification, and the average accuracy can reach 98.8%. To obtain more effective prediction of VOC gas concentration (ethanol, trimethylamine, and ammonia), four algorithms including BPNN, radial basis function neural network (RBFNN), support vector machine (SVM), and hybrid LDA-SVM, which is a combination of SVM and linear discriminant analysis (LDA) are implemented, which are trained with the same training set. By analyzing and comparing the prediction results of these four algorithm models, the RBFNN achieves the peak performance for the concentration predictions of ethanol and ammonia, and the average relative errors are less than 5% and 6.5%, respectively. For trimethylamine (TMA) concentration prediction, the average relative error of RBFNN is equal to 4.41%, which is better than 5.11% of SVM, while the mean absolute error of RBFNN is slightly inferior to SVM. Therefore, the classification accuracy of the gas type by BPNN and the prediction accuracy of gas concentration by RBFNN can meet the requirement of distinguishing the freshness of food.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Science and Technology Innovation Conunittee[JCYJ120170412154,126330] ; Guangdong Natural Science Funds for Distinguished Young Scholar[2016A030306042] ; Department of Science and Technology of Guangdong Province[2018A050506001]
WOS研究方向
Engineering ; Science & Technology - Other Topics
WOS类目
Engineering, Electrical & Electronic ; Nanoscience & Nanotechnology
WOS记录号
WOS:000722588100050
EI入藏号
20210109712546
EI主题词
Ammonia ; Backpropagation ; Chemical sensors ; Discriminant analysis ; Errors ; Ethanol ; Forecasting ; Gas detectors ; Gases ; Learning systems ; Metals ; Nanosensors ; Predictive analytics ; Radial basis function networks
EI分类号
Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Nanotechnology:761 ; Chemistry:801 ; Organic Compounds:804.1 ; Inorganic Compounds:804.2 ; Accidents and Accident Prevention:914.1 ; Statistical Methods:922 ; Solid State Physics:933
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9265606
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210936
专题工学院_深港微电子学院
工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, GaN Device Engn Technol Res Ctr Guangdong, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Engn Res Ctr Integrated Circuits Next Generat Com, Minist Educ, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
第一作者单位深港微电子学院;  南方科技大学
通讯作者单位深港微电子学院;  南方科技大学
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Liu, Yingming,Zhao, Changhui,Lin, Junqi,et al. Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:295-300.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yingming]的文章
[Zhao, Changhui]的文章
[Lin, Junqi]的文章
百度学术
百度学术中相似的文章
[Liu, Yingming]的文章
[Zhao, Changhui]的文章
[Lin, Junqi]的文章
必应学术
必应学术中相似的文章
[Liu, Yingming]的文章
[Zhao, Changhui]的文章
[Lin, Junqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。