题名 | Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms |
作者 | |
通讯作者 | Wang, Fei |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)
|
ISSN | 2474-3747
|
EISSN | 2474-3755
|
ISBN | 978-1-7281-7231-6
|
会议录名称 | |
页码 | 295-300
|
会议日期 | SEP 27-30, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this work, a facile method is proposed to monitor the freshness of meat and fruits by combining a gas sensor array with machine learning algorithms, where the sensor array consists of four commercial metal oxide-based gas sensors. Back-propagation neural net cork (BPNN) is used for gas classification, and the average accuracy can reach 98.8%. To obtain more effective prediction of VOC gas concentration (ethanol, trimethylamine, and ammonia), four algorithms including BPNN, radial basis function neural network (RBFNN), support vector machine (SVM), and hybrid LDA-SVM, which is a combination of SVM and linear discriminant analysis (LDA) are implemented, which are trained with the same training set. By analyzing and comparing the prediction results of these four algorithm models, the RBFNN achieves the peak performance for the concentration predictions of ethanol and ammonia, and the average relative errors are less than 5% and 6.5%, respectively. For trimethylamine (TMA) concentration prediction, the average relative error of RBFNN is equal to 4.41%, which is better than 5.11% of SVM, while the mean absolute error of RBFNN is slightly inferior to SVM. Therefore, the classification accuracy of the gas type by BPNN and the prediction accuracy of gas concentration by RBFNN can meet the requirement of distinguishing the freshness of food. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Science and Technology Innovation Conunittee[JCYJ120170412154,126330]
; Guangdong Natural Science Funds for Distinguished Young Scholar[2016A030306042]
; Department of Science and Technology of Guangdong Province[2018A050506001]
|
WOS研究方向 | Engineering
; Science & Technology - Other Topics
|
WOS类目 | Engineering, Electrical & Electronic
; Nanoscience & Nanotechnology
|
WOS记录号 | WOS:000722588100050
|
EI入藏号 | 20210109712546
|
EI主题词 | Ammonia
; Backpropagation
; Chemical sensors
; Discriminant analysis
; Errors
; Ethanol
; Forecasting
; Gas detectors
; Gases
; Learning systems
; Metals
; Nanosensors
; Predictive analytics
; Radial basis function networks
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Nanotechnology:761
; Chemistry:801
; Organic Compounds:804.1
; Inorganic Compounds:804.2
; Accidents and Accident Prevention:914.1
; Statistical Methods:922
; Solid State Physics:933
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9265606 |
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210936 |
专题 | 工学院_深港微电子学院 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, GaN Device Engn Technol Res Ctr Guangdong, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Engn Res Ctr Integrated Circuits Next Generat Com, Minist Educ, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China |
第一作者单位 | 深港微电子学院; 南方科技大学 |
通讯作者单位 | 深港微电子学院; 南方科技大学 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Liu, Yingming,Zhao, Changhui,Lin, Junqi,et al. Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:295-300.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论