题名 | An investigation of few-shot learning in spoken term classification |
作者 | |
通讯作者 | Ko,Tom |
DOI | |
发表日期 | 2020
|
ISSN | 2308-457X
|
EISSN | 1990-9772
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 2582-2586
|
摘要 | In this paper, we investigate the feasibility of applying few-shot learning algorithms to a speech task. We formulate a user-defined scenario of spoken term classification as a few-shot learning problem. In most few-shot learning studies, it is assumed that all the N classes are new in a N-way problem. We suggest that this assumption can be relaxed and define a N+Mway problem where N and M are the number of new classes and fixed classes respectively. We propose a modification to the Model-Agnostic Meta-Learning (MAML) algorithm to solve the problem. Experiments on the Google Speech Commands dataset show that our approach outperforms the conventional supervised learning approach and the original MAML. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20205209692001
|
EI主题词 | Learning algorithms
; Speech communication
|
EI分类号 | Machine Learning:723.4.2
; Speech:751.5
|
Scopus记录号 | 2-s2.0-85098174751
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210960 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science,City University of Hong Kong,Hong Kong 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 3.Huawei Noah's Ark Lab, 4.Department of Computing,Hong Kong Polytechnic University,Hong Kong |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen,Yangbin,Ko,Tom,Shang,Lifeng,et al. An investigation of few-shot learning in spoken term classification[C],2020:2582-2586.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论