中文版 | English
题名

An investigation of few-shot learning in spoken term classification

作者
通讯作者Ko,Tom
DOI
发表日期
2020
ISSN
2308-457X
EISSN
1990-9772
会议录名称
卷号
2020-October
页码
2582-2586
摘要
In this paper, we investigate the feasibility of applying few-shot learning algorithms to a speech task. We formulate a user-defined scenario of spoken term classification as a few-shot learning problem. In most few-shot learning studies, it is assumed that all the N classes are new in a N-way problem. We suggest that this assumption can be relaxed and define a N+Mway problem where N and M are the number of new classes and fixed classes respectively. We propose a modification to the Model-Agnostic Meta-Learning (MAML) algorithm to solve the problem. Experiments on the Google Speech Commands dataset show that our approach outperforms the conventional supervised learning approach and the original MAML.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20205209692001
EI主题词
Learning algorithms ; Speech communication
EI分类号
Machine Learning:723.4.2 ; Speech:751.5
Scopus记录号
2-s2.0-85098174751
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210960
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,City University of Hong Kong,Hong Kong
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Huawei Noah's Ark Lab,
4.Department of Computing,Hong Kong Polytechnic University,Hong Kong
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen,Yangbin,Ko,Tom,Shang,Lifeng,et al. An investigation of few-shot learning in spoken term classification[C],2020:2582-2586.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Shang,Lifeng]的文章
百度学术
百度学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Shang,Lifeng]的文章
必应学术
必应学术中相似的文章
[Chen,Yangbin]的文章
[Ko,Tom]的文章
[Shang,Lifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。