中文版 | English
题名

AutoSpeech 2020: The second automated machine learning challenge for speech classification

作者
通讯作者Ko,Tom
DOI
发表日期
2020
ISSN
2308-457X
EISSN
1990-9772
会议录名称
卷号
2020-October
页码
1967-1971
摘要
The AutoSpeech challenge calls for automated machine learning (AutoML) solutions to automate the process of applying machine learning to speech processing tasks. These tasks, which cover a large variety of domains, will be shown to the automated system in a random order. Each time when the tasks are switched, the information of the new task will be hinted with its corresponding training set. Thus, every submitted solution should contain an adaptation routine which adapts the system to the new task. Compared to the first edition, the 2020 edition includes advances of 1) more speech tasks, 2) noisier data in each task, 3) a modified evaluation metric. This paper outlines the challenge and describe the competition protocol, datasets, evaluation metric, starting kit, and baseline systems.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20205209692387
EI主题词
Deep learning ; Automation ; Speech communication
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Automatic Control Principles and Applications:731 ; Speech:751.5
Scopus记录号
2-s2.0-85098110494
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210963
专题工学院_计算机科学与工程系
作者单位
1.Paradigm Inc.,Beijing,China
2.Department of Computer Science and EngineeringSouthern University of Science and Technology,Shenzhen,China
3.ChaLearn,United States
4.ASLP@NPU,Northwestern Polytechnical University,Xian,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang,Jingsong,Ko,Tom,Xu,Zhen,et al. AutoSpeech 2020: The second automated machine learning challenge for speech classification[C],2020:1967-1971.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Jingsong]的文章
[Ko,Tom]的文章
[Xu,Zhen]的文章
百度学术
百度学术中相似的文章
[Wang,Jingsong]的文章
[Ko,Tom]的文章
[Xu,Zhen]的文章
必应学术
必应学术中相似的文章
[Wang,Jingsong]的文章
[Ko,Tom]的文章
[Xu,Zhen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。