中文版 | English
题名

Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time

作者
通讯作者Zhang,Yuqun
发表日期
2021-03-01
DOI
发表期刊
ISSN
1383-7621
EISSN
1873-6165
卷号114
摘要
In GPU-based embedded systems, the problem of computation and data mapping for multiple applications while minimizing the completion time is quite challenging due to large size of the policy space. To achieve fast competition time, a fine-grain mapping framework that explores a set of critical factors is needed for heterogeneous embedded systems. In this paper, we present a theoretical framework that yields a sub-optimal solution via three practical mapping algorithms with low time complexity. We evaluate such algorithms upon StarPU with a large set of popular benchmarks. Experimental results demonstrate that algorithms proposed by the original EMSOFT paper can achieve up to 30% faster completion time compared to state-of-the-art mapping techniques, and can perform consistently well across different workloads. We further extend such algorithms to minimize the completion time and enhance the runtime performance of complex heterogeneous applications under resource-limited infrastructure. We also extend the evaluation by deploying StarPU under multiple setups with an additional benchmark testing suite for simulating real-world runtime neural networks. Experimental results demonstrate that our extended algorithm can achieve much faster completion time (averagely 30% to 37% under multiple resource-constraint scenarios) compared to the state-of-the-art mapping techniques.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61902169] ; Shenzhen Peacock Plan, China[KQTD2016112514355531] ; Science and Tech-nology Innovation Committee Foundation of Shenzhen, China[JCYJ20170817110848086]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号
WOS:000697350100011
出版者
EI入藏号
20205209694443
EI主题词
Conformal mapping ; Complex networks ; Embedded systems
EI分类号
Semiconductor Devices and Integrated Circuits:714.2 ; Computer Circuits:721.3 ; Computer Systems and Equipment:722
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/210965
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,China
2.Department of Computer Science,The University of Texas at Dallas,United States
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Zexin,Zhang,Yuqun,Ding,Ao,et al. Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time[J]. JOURNAL OF SYSTEMS ARCHITECTURE,2021,114.
APA
Li,Zexin,Zhang,Yuqun,Ding,Ao,Zhou,Husheng,&Liu,Cong.(2021).Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time.JOURNAL OF SYSTEMS ARCHITECTURE,114.
MLA
Li,Zexin,et al."Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time".JOURNAL OF SYSTEMS ARCHITECTURE 114(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Zexin]的文章
[Zhang,Yuqun]的文章
[Ding,Ao]的文章
百度学术
百度学术中相似的文章
[Li,Zexin]的文章
[Zhang,Yuqun]的文章
[Ding,Ao]的文章
必应学术
必应学术中相似的文章
[Li,Zexin]的文章
[Zhang,Yuqun]的文章
[Ding,Ao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。