题名 | Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time |
作者 | |
通讯作者 | Zhang,Yuqun |
发表日期 | 2021-03-01
|
DOI | |
发表期刊 | |
ISSN | 1383-7621
|
EISSN | 1873-6165
|
卷号 | 114 |
摘要 | In GPU-based embedded systems, the problem of computation and data mapping for multiple applications while minimizing the completion time is quite challenging due to large size of the policy space. To achieve fast competition time, a fine-grain mapping framework that explores a set of critical factors is needed for heterogeneous embedded systems. In this paper, we present a theoretical framework that yields a sub-optimal solution via three practical mapping algorithms with low time complexity. We evaluate such algorithms upon StarPU with a large set of popular benchmarks. Experimental results demonstrate that algorithms proposed by the original EMSOFT paper can achieve up to 30% faster completion time compared to state-of-the-art mapping techniques, and can perform consistently well across different workloads. We further extend such algorithms to minimize the completion time and enhance the runtime performance of complex heterogeneous applications under resource-limited infrastructure. We also extend the evaluation by deploying StarPU under multiple setups with an additional benchmark testing suite for simulating real-world runtime neural networks. Experimental results demonstrate that our extended algorithm can achieve much faster completion time (averagely 30% to 37% under multiple resource-constraint scenarios) compared to the state-of-the-art mapping techniques. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[61902169]
; Shenzhen Peacock Plan, China[KQTD2016112514355531]
; Science and Tech-nology Innovation Committee Foundation of Shenzhen, China[JCYJ20170817110848086]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Hardware & Architecture
; Computer Science, Software Engineering
|
WOS记录号 | WOS:000697350100011
|
出版者 | |
EI入藏号 | 20205209694443
|
EI主题词 | Conformal mapping
; Complex networks
; Embedded systems
|
EI分类号 | Semiconductor Devices and Integrated Circuits:714.2
; Computer Circuits:721.3
; Computer Systems and Equipment:722
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/210965 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,China 2.Department of Computer Science,The University of Texas at Dallas,United States |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Zexin,Zhang,Yuqun,Ding,Ao,et al. Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time[J]. JOURNAL OF SYSTEMS ARCHITECTURE,2021,114.
|
APA |
Li,Zexin,Zhang,Yuqun,Ding,Ao,Zhou,Husheng,&Liu,Cong.(2021).Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time.JOURNAL OF SYSTEMS ARCHITECTURE,114.
|
MLA |
Li,Zexin,et al."Efficient algorithms for task mapping on heterogeneous CPU/GPU platforms for fast completion time".JOURNAL OF SYSTEMS ARCHITECTURE 114(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论