中文版 | English
题名

SEED: Confidential big data workflow scheduling with intel SGX under deadline constraints

作者
通讯作者Zhang,Fengwei
DOI
发表日期
2020-11-01
会议名称
Proceedings of the IEEE International Conference on Services Computing (SCC'20)
ISSN
2474-8137
ISBN
978-1-7281-8790-7
会议录名称
页码
108-115
会议日期
October, 2020
会议地点
Beijing, China
摘要

Recently, cloud platforms play an essential role in large-scale big data analytics and especially running scientific workflows. In contrast to traditional on-premise computing environments, where the number of resources is bounded, cloud computing can provide practically unlimited resources to a workflow application based on a pay-as-you-go pricing model. One challenge of using cloud computing is the protection of the privacy of the confidential workflow's tasks, whose proprietary algorithm implementations are intellectual properties of the respective stakeholders. Another one is the monetary cost optimization of executing workflows in the cloud while satisfying a user-defined deadline. In this paper, we use the Intel Software Guard eXtensions (SGX) as a Trusted Execution Environment (TEE) to support the confidentiality of individual workflow tasks. Based on this, we propose a deadline-constrained and SGX-aware workflow scheduling algorithm, called SEED (SGX, Efficient, Effective, Deadline Constrained), to address these two challenges. SEED features several heuristics, including exploiting the longest critical paths and reuse of extra times in existing virtual machine instances. Our experiments show that SEED outperforms the representative algorithm, IC-PCP, in most cases in monetary cost while satisfying the given user-defined deadline. To our best knowledge, this is the first workflow scheduling algorithm that considers protecting the confidentiality of workflow tasks in a public cloud computing environment.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000647734400016
EI入藏号
20210309770433
EI主题词
Advanced Analytics ; Big data ; Cloud computing ; Data Analytics ; Economics
EI分类号
Digital Computers and Systems:722.4 ; Data Processing and Image Processing:723.2 ; Social Sciences:971
Scopus记录号
2-s2.0-85099191726
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9284588
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/216641
专题工学院_计算机科学与工程系
作者单位
1.Wayne State University,Department of Computer Science,Detroit,United States
2.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen Guangdong,China
3.Southern Illinois University,School of Computing,Carbondale,United States
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ahmed,Ishtiaq,Mofrad,Saeid,Lu,Shiyong,et al. SEED: Confidential big data workflow scheduling with intel SGX under deadline constraints[C],2020:108-115.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
SEED Confidential Bi(574KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ahmed,Ishtiaq]的文章
[Mofrad,Saeid]的文章
[Lu,Shiyong]的文章
百度学术
百度学术中相似的文章
[Ahmed,Ishtiaq]的文章
[Mofrad,Saeid]的文章
[Lu,Shiyong]的文章
必应学术
必应学术中相似的文章
[Ahmed,Ishtiaq]的文章
[Mofrad,Saeid]的文章
[Lu,Shiyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。