中文版 | English
题名

Satellite Remote Sensing for Estimating PM2.5 and Its Components

作者
通讯作者Li, Ying
发表日期
2021-03-01
DOI
发表期刊
ISSN
2198-6592
卷号7期号:1
摘要
Purpose of Review PM2.5 satellite remote sensing is the most powerful way to acquire the PM2.5 distribution and variation at a large scale with high resolution. Thus, PM2.5 remote sensing methods have been widely developed and applied in multiple environmentally related research areas in recent decades. Hence, the purpose of this review is to summarize these methods, required input data and main applications of PM2.5 and its remote sensing components. Recent Findings In general, two-step methods have been used for estimating PM2.5, which first retrieves the aerosol optical depth (AOD) and estimates PM2.5 from the AOD with other supplemental data containing the temporal or spatial variation impact on PM2.5 or data correlated with PM2.5 variation by different AOD-PM2.5 models. The AOD-PM2.5 models have been developed by using different methods, including empirical-statistical models (single or combined statistical models and big data-based machine learning methods), CTM-based models and semi-empirical/physical models. Current research can provide high-resolution (e.g. daily variations at 1 km and hourly variations at similar to 1 km) PM2.5 products, which have been widely used in air pollution management, health impact assessments, numerical data assimilation and climate impact analyses. This review summarizes the current research on method development, application, achievement and remaining challenges in remote sensing of PM2.5 and its components, which are essential for further improvement of the methods and accuracy of PM2.5 remote sensing and are likely applicable to other PM2.5 component remote sensing methods in the future.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Province Science and Technology Planning Project of China[2017A050506003] ; National Natural Science Foundation of China[41961160728] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0210] ; Shenzhen Key Laboratory Foundation[ZDSYS20180208184349083]
WOS研究方向
Environmental Sciences & Ecology ; Public, Environmental & Occupational Health
WOS类目
Environmental Sciences ; Public, Environmental & Occupational Health
WOS记录号
WOS:000605148000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221111
专题工学院_海洋科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Ctr Ocean & Atmospher Sci SUSTech COAST, Shenzhen, Peoples R China
3.Southern Marine Sci & Engn Guangdong Lab, Guangzhou, Peoples R China
4.Harbin Inst Technol, Dept Environm, Shenzhen, Peoples R China
第一作者单位海洋科学与工程系;  南方科技大学
通讯作者单位海洋科学与工程系;  南方科技大学
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Li, Ying,Yuan, Shuyun,Fan, Shidong,et al. Satellite Remote Sensing for Estimating PM2.5 and Its Components[J]. Current Pollution Reports,2021,7(1).
APA
Li, Ying.,Yuan, Shuyun.,Fan, Shidong.,Song, Yushan.,Wang, Zihao.,...&Liu, Yiwen.(2021).Satellite Remote Sensing for Estimating PM2.5 and Its Components.Current Pollution Reports,7(1).
MLA
Li, Ying,et al."Satellite Remote Sensing for Estimating PM2.5 and Its Components".Current Pollution Reports 7.1(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Ying]的文章
[Yuan, Shuyun]的文章
[Fan, Shidong]的文章
百度学术
百度学术中相似的文章
[Li, Ying]的文章
[Yuan, Shuyun]的文章
[Fan, Shidong]的文章
必应学术
必应学术中相似的文章
[Li, Ying]的文章
[Yuan, Shuyun]的文章
[Fan, Shidong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。