中文版 | English
题名

Joint calibrationless reconstruction of highly undersampled multicontrast MR datasets using a low-rank Hankel tensor completion framework

作者
通讯作者Wu, Ed X.
发表日期
2021-06-01
DOI
发表期刊
ISSN
0740-3194
EISSN
1522-2594
卷号85期号:6页码:3256-3271
摘要
["Purpose To jointly reconstruct highly undersampled multicontrast two-dimensional (2D) datasets through a low-rank Hankel tensor completion framework.","Methods A multicontrast Hankel tensor completion (MC-HTC) framework is proposed to exploit the shareable information in multicontrast datasets with respect to their highly correlated image structure, common spatial support, and shared coil sensitivity for joint reconstruction. This is achieved by first organizing multicontrast k-space datasets into a single block-wise Hankel tensor. Subsequent low-rank tensor approximation via higher-order singular value decomposition (HOSVD) uses the image structural correlation by considering different contrasts as virtual channels. Meanwhile, the HOSVD imposes common spatial support and shared coil sensitivity by treating data from different contrasts as from additional k-space kernels. The missing k-space data are then recovered by iteratively performing such low-rank approximation and enforcing data consistency. This joint reconstruction framework was evaluated using multicontrast multichannel 2D human brain datasets (T-1-weighted, T-2-weighted, fluid-attenuated inversion recovery, and T-1-weighted-inversion recovery) of identical image geometry with random and uniform undersampling schemes.","Results The proposed method offered high acceleration, exhibiting significantly less residual errors when compared with both single-contrast SAKE (simultaneous autocalibrating and k-space estimation) and multicontrast J-LORAKS (joint parallel-imaging-low-rank matrix modeling of local k-space neighborhoods) low-rank reconstruction. Furthermore, the MC-HTC framework was applied uniquely to Cartesian uniform undersampling by incorporating a novel complementary k-space sampling strategy where the phase-encoding direction among different contrasts is orthogonally alternated.","Conclusion The proposed MC-HTC approach presents an effective tensor completion framework to jointly reconstruct highly undersampled multicontrast 2D datasets without coil-sensitivity calibration."]
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Hong Kong Research Grant Council["R7003-19/C7048-16G/HKU17112120","HKU17103819/HKU17104020"] ; Guangdong Key Technologies for Treatment of Brain Disorders[2018B030332001] ; Guangdong Key Technologies for Alzheimer's Disease Diagnosis and Treatment[2018B030336001] ; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund[2019008]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000614025900001
出版者
EI入藏号
20210609883663
EI主题词
Approximation theory ; Iterative methods ; Learning to rank ; Recovery ; Singular value decomposition ; Tensors
EI分类号
Mathematics:921
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221151
专题工学院_电子与电气工程系
作者单位
1.Univ Hong Kong, Lab Biomed Imaging & Signal Proc, Hong Kong, Peoples R China
2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
4.Southern Med Univ, Sch Biomed Engn, Guangzhou, Guangdong, Peoples R China
第一作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Yi, Zheyuan,Liu, Yilong,Zhao, Yujiao,et al. Joint calibrationless reconstruction of highly undersampled multicontrast MR datasets using a low-rank Hankel tensor completion framework[J]. MAGNETIC RESONANCE IN MEDICINE,2021,85(6):3256-3271.
APA
Yi, Zheyuan.,Liu, Yilong.,Zhao, Yujiao.,Xiao, Linfang.,Leong, Alex T. L..,...&Wu, Ed X..(2021).Joint calibrationless reconstruction of highly undersampled multicontrast MR datasets using a low-rank Hankel tensor completion framework.MAGNETIC RESONANCE IN MEDICINE,85(6),3256-3271.
MLA
Yi, Zheyuan,et al."Joint calibrationless reconstruction of highly undersampled multicontrast MR datasets using a low-rank Hankel tensor completion framework".MAGNETIC RESONANCE IN MEDICINE 85.6(2021):3256-3271.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yi, Zheyuan]的文章
[Liu, Yilong]的文章
[Zhao, Yujiao]的文章
百度学术
百度学术中相似的文章
[Yi, Zheyuan]的文章
[Liu, Yilong]的文章
[Zhao, Yujiao]的文章
必应学术
必应学术中相似的文章
[Yi, Zheyuan]的文章
[Liu, Yilong]的文章
[Zhao, Yujiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。