中文版 | English
题名

Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery

作者
通讯作者Liu, Junguo
发表日期
2021-03-15
DOI
发表期刊
ISSN
0034-4257
EISSN
1879-0704
卷号255
摘要
Extraction of drainage networks is an important element of river flow routing in hydrology and large-scale estimates of river behaviors in Earth sciences. Emerging studies with a focus on greenhouse gases reveal that small rivers can contribute to more than half of the global carbon emissions from inland waters (including lakes and wetlands). However, large-scale extraction of drainage networks is constrained by the coarse resolution of observational data and models, which hinders assessments of terrestrial hydrological and biogeochemical cycles. Recognizing that Sentinel-2 satellite can detect surface water up to a 10-m resolution over large scales, we propose a new method named Remote Sensing Stream Burning (RSSB) to integrate high-resolution observational flow location with coarse topography to improve the extraction of drainage network. In RSSB, satellite-derived input is integrated in a spatially continuous manner, producing a quasi-bathymetry map where relative relief is enforced, enabling a fine-grained, accurate, and multitemporal extraction of drainage network. RSSB was applied to the Lancang-Mekong River basin to derive a 10-m resolution drainage network, with a significant reduction in location errors as validated by the river centerline measurements. The high-resolution extraction resulted in a realistic representation of meanders and detailed network connections. Further, RSSB enabled a multitemporal extraction of river networks during wet/dry seasons and before/after the formation of new channels. The proposed method is fully automated, meaning that the network extraction preserves basin-wide connectivity without requiring any postprocessing, hence facilitating the construction of drainage networks data with openly accessible imagery. The RSSB method provides a basis for the accurate representation of drainage networks that maintains channel connectivity, allows a more realistic inclusion of small rivers and streams, and enables a greater understanding of complex but active exchange between inland water and other related Earth system components.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Strategic Priority Research Program of the Chinese Academy of Sciences[XDA20060402] ; National Natural Science Foundation of China[41625001] ; High-level Special Funding of the Southern University of Science and Technology["G02296302","G02296402"] ; National Science Foundation[1752729]
WOS研究方向
Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:000619233100003
出版者
EI入藏号
20210409812450
EI主题词
Behavioral research ; Biogeochemistry ; Catchments ; Data mining ; Extraction ; Greenhouse gases ; Remote sensing ; Rivers ; Topography
EI分类号
Air Pollution Sources:451.1 ; Geochemistry:481.2 ; Data Processing and Image Processing:723.2 ; Chemical Operations:802.3 ; Materials Science:951 ; Social Sciences:971
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221168
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
2.Univ Hong Kong, Dept Geog, Hong Kong, Peoples R China
3.Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Wang, Zifeng,Liu, Junguo,Li, Jinbao,et al. Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery[J]. REMOTE SENSING OF ENVIRONMENT,2021,255.
APA
Wang, Zifeng,Liu, Junguo,Li, Jinbao,Meng, Ying,Pokhrel, Yadu,&Zhang, Hongsheng.(2021).Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery.REMOTE SENSING OF ENVIRONMENT,255.
MLA
Wang, Zifeng,et al."Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery".REMOTE SENSING OF ENVIRONMENT 255(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Zifeng]的文章
[Liu, Junguo]的文章
[Li, Jinbao]的文章
百度学术
百度学术中相似的文章
[Wang, Zifeng]的文章
[Liu, Junguo]的文章
[Li, Jinbao]的文章
必应学术
必应学术中相似的文章
[Wang, Zifeng]的文章
[Liu, Junguo]的文章
[Li, Jinbao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。