中文版 | English
题名

Balancing performance between the decision space and the objective space in multimodal multiobjective optimization

作者
通讯作者Wang, Zhenkun
发表日期
2021-03-01
DOI
发表期刊
ISSN
1865-9284
EISSN
1865-9292
卷号13期号:1页码:31-47
摘要

Many multimodal multiobjective optimization algorithms aim to find as many Pareto optimal solutions as possible while the performance in the objective space is despised. More seriously, some algorithms even overemphasize the diversity of solution set in the decision space at the cost of convergence. How to improve convergence and diversity simultaneously is an important issue when solving multimodal multiobjective optimization problems. In this paper, we propose an evolutionary multiobjective optimization algorithm with a decomposition strategy in the decision space (EMO-DD). A decision subregion allocation and diversity archive preservation methods are proposed to promote the diversity of solutions in the decision space. Meanwhile, a bi-objective optimization problem is formulated for screening for solutions with great convergence and diversity. Combining a modified mating selection method, well-performed solutions both on the convergence and diversity are preserved and inherited. The performance of EMO-DD is compared with five state-of-the-art algorithms on fifteen test problems. The experimental results show that EMO-DD can solve multimodal multiobjective optimization problems, and can improve the performance of the solution set in both the decision and objective spaces.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:000614711000001
出版者
EI入藏号
20210609899896
EI主题词
Evolutionary algorithms ; Pareto principle
EI分类号
Optimization Techniques:921.5
来源库
Web of Science
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221180
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
3.Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China
4.Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Yang, Qite,Wang, Zhenkun,Luo, Jianping,et al. Balancing performance between the decision space and the objective space in multimodal multiobjective optimization[J]. Memetic Computing,2021,13(1):31-47.
APA
Yang, Qite,Wang, Zhenkun,Luo, Jianping,&He, Qiang.(2021).Balancing performance between the decision space and the objective space in multimodal multiobjective optimization.Memetic Computing,13(1),31-47.
MLA
Yang, Qite,et al."Balancing performance between the decision space and the objective space in multimodal multiobjective optimization".Memetic Computing 13.1(2021):31-47.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Qite]的文章
[Wang, Zhenkun]的文章
[Luo, Jianping]的文章
百度学术
百度学术中相似的文章
[Yang, Qite]的文章
[Wang, Zhenkun]的文章
[Luo, Jianping]的文章
必应学术
必应学术中相似的文章
[Yang, Qite]的文章
[Wang, Zhenkun]的文章
[Luo, Jianping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。