题名 | Balancing performance between the decision space and the objective space in multimodal multiobjective optimization |
作者 | |
通讯作者 | Wang, Zhenkun |
发表日期 | 2021-03-01
|
DOI | |
发表期刊 | |
ISSN | 1865-9284
|
EISSN | 1865-9292
|
卷号 | 13期号:1页码:31-47 |
摘要 | Many multimodal multiobjective optimization algorithms aim to find as many Pareto optimal solutions as possible while the performance in the objective space is despised. More seriously, some algorithms even overemphasize the diversity of solution set in the decision space at the cost of convergence. How to improve convergence and diversity simultaneously is an important issue when solving multimodal multiobjective optimization problems. In this paper, we propose an evolutionary multiobjective optimization algorithm with a decomposition strategy in the decision space (EMO-DD). A decision subregion allocation and diversity archive preservation methods are proposed to promote the diversity of solutions in the decision space. Meanwhile, a bi-objective optimization problem is formulated for screening for solutions with great convergence and diversity. Combining a modified mating selection method, well-performed solutions both on the convergence and diversity are preserved and inherited. The performance of EMO-DD is compared with five state-of-the-art algorithms on fifteen test problems. The experimental results show that EMO-DD can solve multimodal multiobjective optimization problems, and can improve the performance of the solution set in both the decision and objective spaces. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Operations Research & Management Science
|
WOS记录号 | WOS:000614711000001
|
出版者 | |
EI入藏号 | 20210609899896
|
EI主题词 | Evolutionary algorithms
; Pareto principle
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:20
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221180 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 3.Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China 4.Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China |
第一作者单位 | 系统设计与智能制造学院 |
通讯作者单位 | 系统设计与智能制造学院; 计算机科学与工程系 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Yang, Qite,Wang, Zhenkun,Luo, Jianping,et al. Balancing performance between the decision space and the objective space in multimodal multiobjective optimization[J]. Memetic Computing,2021,13(1):31-47.
|
APA |
Yang, Qite,Wang, Zhenkun,Luo, Jianping,&He, Qiang.(2021).Balancing performance between the decision space and the objective space in multimodal multiobjective optimization.Memetic Computing,13(1),31-47.
|
MLA |
Yang, Qite,et al."Balancing performance between the decision space and the objective space in multimodal multiobjective optimization".Memetic Computing 13.1(2021):31-47.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论