题名 | Optimizing a polynomial function on a quantum processor |
作者 | |
通讯作者 | Wang, Xiaoting; Rebentrost, Patrick; Long, Guilu |
发表日期 | 2021-01-29
|
DOI | |
发表期刊 | |
EISSN | 2056-6387
|
卷号 | 7期号:1 |
摘要 | The gradient descent method is central to numerical optimization and is the key ingredient in many machine learning algorithms. It promises to find a local minimum of a function by iteratively moving along the direction of the steepest descent. Since for high-dimensional problems the required computational resources can be prohibitive, it is desirable to investigate quantum versions of the gradient descent, such as the recently proposed (Rebentrost et al.(1)). Here, we develop this protocol and implement it on a quantum processor with limited resources. A prototypical experiment is shown with a four-qubit nuclear magnetic resonance quantum processor, which demonstrates the iterative optimization process. Experimentally, the final point converged to the local minimum with a fidelity >94%, quantified via full-state tomography. Moreover, our method can be employed to a multidimensional scaling problem, showing the potential to outperform its classical counterparts. Considering the ongoing efforts in quantum information and data science, our work may provide a faster approach to solving high-dimensional optimization problems and a subroutine for future practical quantum computers. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[11905111,11974205,11774197,11905099,
|
WOS研究方向 | Physics
|
WOS类目 | Quantum Science & Technology
; Physics, Applied
; Physics, Atomic, Molecular & Chemical
; Physics, Condensed Matter
|
WOS记录号 | WOS:000616402200003
|
出版者 | |
EI入藏号 | 20210509860317
|
EI主题词 | Data Science
; Gradient methods
; Learning algorithms
; Machine learning
; Numerical methods
; Qubits
|
EI分类号 | Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85100097790
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221217 |
专题 | 量子科学与工程研究院 |
作者单位 | 1.Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing, Peoples R China 2.Tsinghua Univ, Dept Phys, Beijing, Peoples R China 3.Shenzhen JL Computat Sci & Appl Res Inst, Shenzhen, Peoples R China 4.Beijing Acad Quantum Informat Sci, Beijing, Peoples R China 5.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Peoples R China 6.Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China 7.Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore 8.Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China 9.Tsinghua Univ, Sch Informat, Beijing, Peoples R China 10.Frontier Sci Ctr Quantum Informat, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 |
Li, Keren,Wei, Shijie,Gao, Pan,et al. Optimizing a polynomial function on a quantum processor[J]. NPJ QUANTUM INFORMATION,2021,7(1).
|
APA |
Li, Keren.,Wei, Shijie.,Gao, Pan.,Zhang, Feihao.,Zhou, Zengrong.,...&Long, Guilu.(2021).Optimizing a polynomial function on a quantum processor.NPJ QUANTUM INFORMATION,7(1).
|
MLA |
Li, Keren,et al."Optimizing a polynomial function on a quantum processor".NPJ QUANTUM INFORMATION 7.1(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论