中文版 | English
题名

Optimizing a polynomial function on a quantum processor

作者
通讯作者Wang, Xiaoting; Rebentrost, Patrick; Long, Guilu
发表日期
2021-01-29
DOI
发表期刊
EISSN
2056-6387
卷号7期号:1
摘要

The gradient descent method is central to numerical optimization and is the key ingredient in many machine learning algorithms. It promises to find a local minimum of a function by iteratively moving along the direction of the steepest descent. Since for high-dimensional problems the required computational resources can be prohibitive, it is desirable to investigate quantum versions of the gradient descent, such as the recently proposed (Rebentrost et al.(1)). Here, we develop this protocol and implement it on a quantum processor with limited resources. A prototypical experiment is shown with a four-qubit nuclear magnetic resonance quantum processor, which demonstrates the iterative optimization process. Experimentally, the final point converged to the local minimum with a fidelity >94%, quantified via full-state tomography. Moreover, our method can be employed to a multidimensional scaling problem, showing the potential to outperform its classical counterparts. Considering the ongoing efforts in quantum information and data science, our work may provide a faster approach to solving high-dimensional optimization problems and a subroutine for future practical quantum computers.

相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[11905111,11974205,11774197,11905099,
WOS研究方向
Physics
WOS类目
Quantum Science & Technology ; Physics, Applied ; Physics, Atomic, Molecular & Chemical ; Physics, Condensed Matter
WOS记录号
WOS:000616402200003
出版者
EI入藏号
20210509860317
EI主题词
Data Science ; Gradient methods ; Learning algorithms ; Machine learning ; Numerical methods ; Qubits
EI分类号
Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85100097790
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221217
专题量子科学与工程研究院
作者单位
1.Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing, Peoples R China
2.Tsinghua Univ, Dept Phys, Beijing, Peoples R China
3.Shenzhen JL Computat Sci & Appl Res Inst, Shenzhen, Peoples R China
4.Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
5.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Peoples R China
6.Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu, Peoples R China
7.Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
8.Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
9.Tsinghua Univ, Sch Informat, Beijing, Peoples R China
10.Frontier Sci Ctr Quantum Informat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Li, Keren,Wei, Shijie,Gao, Pan,et al. Optimizing a polynomial function on a quantum processor[J]. NPJ QUANTUM INFORMATION,2021,7(1).
APA
Li, Keren.,Wei, Shijie.,Gao, Pan.,Zhang, Feihao.,Zhou, Zengrong.,...&Long, Guilu.(2021).Optimizing a polynomial function on a quantum processor.NPJ QUANTUM INFORMATION,7(1).
MLA
Li, Keren,et al."Optimizing a polynomial function on a quantum processor".NPJ QUANTUM INFORMATION 7.1(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Keren]的文章
[Wei, Shijie]的文章
[Gao, Pan]的文章
百度学术
百度学术中相似的文章
[Li, Keren]的文章
[Wei, Shijie]的文章
[Gao, Pan]的文章
必应学术
必应学术中相似的文章
[Li, Keren]的文章
[Wei, Shijie]的文章
[Gao, Pan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。