题名 | Quantum speedup in adaptive boosting of binary classification |
作者 | |
通讯作者 | Hsieh, Min-Hsiu; Yung, Man-Hong |
发表日期 | 2021-02-01
|
DOI | |
发表期刊 | |
ISSN | 1674-7348
|
EISSN | 1869-1927
|
卷号 | 64期号:2 |
摘要 | In classical machine learning, a set of weak classifiers can be adaptively combined for improving the overall performance, a technique called adaptive boosting (or AdaBoost). However, constructing a combined classifier for a large data set is typically resource consuming. Here we propose a quantum extension of AdaBoost, demonstrating a quantum algorithm that can output the optimal strong classifier with a quadratic speedup in the number of queries of the weak classifiers. Our results also include a generalization of the standard AdaBoost to the cases where the output of each classifier may be probabilistic. We prove that the query complexity of the non-deterministic classifiers is the same as those of deterministic classifiers, which may be of independent interest to the classical machine-learning community. Additionally, once the optimal classifier is determined by our quantum algorithm, no quantum resources are further required. This fact may lead to applications on near term quantum devices. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Natural Science Foundation of Guangdong Province[2017B030308003]
; Key R&D Program of Guangdong Province[2018B030326001]
; Science, Technology and Innovation Commission of Shenzhen Municipality["JCYJ20170412152620376","JCYJ20170817105046702","KYTDPT20181011104202253"]
; National Natural Science Foundation of China[11875160,"U1801661"]
; Economy, Trade and Information Commission of Shenzhen Municipality[201901161512]
; Guangdong Provincial Key Laboratory[2019B121203002]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000609822100001
|
出版者 | |
EI入藏号 | 20210309787721
|
EI主题词 | Classification (of information)
; Machine learning
; Quantum theory
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Quantum Theory; Quantum Mechanics:931.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221243 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Nanyang Technol Univ, Sch Phys & Mathmat Sci, Singapore, Singapore 2.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China 5.Univ Technol Sydney, Ctr Quantum Software & Informat, Sydney, NSW 2007, Australia 6.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China |
第一作者单位 | 物理系 |
通讯作者单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Wang, XiMing,Ma, YueChi,Hsieh, Min-Hsiu,et al. Quantum speedup in adaptive boosting of binary classification[J]. Science China-Physics Mechanics & Astronomy,2021,64(2).
|
APA |
Wang, XiMing,Ma, YueChi,Hsieh, Min-Hsiu,&Yung, Man-Hong.(2021).Quantum speedup in adaptive boosting of binary classification.Science China-Physics Mechanics & Astronomy,64(2).
|
MLA |
Wang, XiMing,et al."Quantum speedup in adaptive boosting of binary classification".Science China-Physics Mechanics & Astronomy 64.2(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论