中文版 | English
题名

Perturbation Techniques for Convergence Analysis of Proximal Gradient Method and Other First-Order Algorithms via Variational Analysis

作者
通讯作者Zhang, Jin
发表日期
2021
DOI
发表期刊
ISSN
1877-0533
EISSN
1877-0541
卷号30页码:39-79
摘要
Wedevelopnew perturbation techniques for conducting convergence analysis of various first-order algorithms for a class of nonsmooth optimization problems. We consider the iteration scheme of an algorithm to construct a perturbed stationary point set-valued map, and define the perturbing parameter by the difference of two consecutive iterates. Then, we show that the calmness condition of the induced set-valued map, together with a local version of the proper separation of stationary value condition, is a sufficient condition to ensure the linear convergence of the algorithm. The equivalence of the calmness condition to the one for the canonically perturbed stationary point set-valued map is proved, and this equivalence allows us to derive some sufficient conditions for calmness by using some recent developments in variational analysis. These sufficient conditions are different from existing results (especially, those error-bound-based ones) in that they can be easily verified for many concrete application models. Our analysis is focused on the fundamental proximal gradient (PG) method, and it enables us to show that any accumulation of the sequence generated by the PG method must be a stationary point in terms of the proximal subdifferential, instead of the limiting subdifferential. This result finds the surprising fact that the solution quality found by the PG method is in general superior. Our analysis also leads to some improvement for the linear convergence results of the PG method in the convex case. The new perturbation technique can be conveniently used to derive linear rate convergence of a number of other first-order methods including the well-known alternating direction method of multipliers and primal-dual hybrid gradient method, under mild assumptions.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSFC[11871279,11971090] ; General Research Fund from Hong Kong Research Grants Council[12302318] ; National Science Foundation of China[11971220] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515011152]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000612573400001
出版者
EI入藏号
20221111795141
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221315
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
2.Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
3.Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
4.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, SUSTech Int Ctr Math, Dept Math, Shenzhen, Peoples R China
通讯作者单位数学系
推荐引用方式
GB/T 7714
Wang, Xiangfeng,Ye, Jane J.,Yuan, Xiaoming,et al. Perturbation Techniques for Convergence Analysis of Proximal Gradient Method and Other First-Order Algorithms via Variational Analysis[J]. Set-Valued and Variational Analysis,2021,30:39-79.
APA
Wang, Xiangfeng,Ye, Jane J.,Yuan, Xiaoming,Zeng, Shangzhi,&Zhang, Jin.(2021).Perturbation Techniques for Convergence Analysis of Proximal Gradient Method and Other First-Order Algorithms via Variational Analysis.Set-Valued and Variational Analysis,30,39-79.
MLA
Wang, Xiangfeng,et al."Perturbation Techniques for Convergence Analysis of Proximal Gradient Method and Other First-Order Algorithms via Variational Analysis".Set-Valued and Variational Analysis 30(2021):39-79.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Xiangfeng]的文章
[Ye, Jane J.]的文章
[Yuan, Xiaoming]的文章
百度学术
百度学术中相似的文章
[Wang, Xiangfeng]的文章
[Ye, Jane J.]的文章
[Yuan, Xiaoming]的文章
必应学术
必应学术中相似的文章
[Wang, Xiangfeng]的文章
[Ye, Jane J.]的文章
[Yuan, Xiaoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。