中文版 | English
题名

Power transformer fault diagnosis considering data imbalance and data set fusion

作者
通讯作者Chen, Hong Cai
发表日期
2020-12-01
DOI
发表期刊
ISSN
2397-7264
卷号6页码:543-554
摘要
Improving the accuracy of transformer dissolved gas analysis is always an important demand for power companies. However, the requirement for large numbers of fault samples becomes an obstacle to this demand. This article creatively uses a large number of health data, which is much easier to obtain by power companies, to improve diagnosis accuracy. Comprehensive investigations from the view of both data set and methodology to deal with this problem are presented. A data set consists of 9595 health samples and 993 fault samples is used for analysis. The characteristics of the data set and the influence of the health data on diagnostic accuracy are discussed. The performance of many state-of-art algorithms that handle the imbalanced problem is evaluated. Meanwhile, an efficient fault diagnosis algorithm named self-paced ensemble (SPE) is presented. In SPE, classification hardness is proposed to include the data characteristic in the classification. This method can guarantee the diversity of the data set and keep high performance. According to the experiment results, the superior of SPE is confirmed and also proves that involving more health samples can improve transformer diagnosis when fault data are limited.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Science and Technology Project of State Grid Corporation of China[5500202019090A-0-0-00]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000607289000001
出版者
EI入藏号
20212510531184
EI主题词
Electric utilities ; Failure analysis ; Health ; Power transformers
EI分类号
Medicine and Pharmacology:461.6 ; Electric Power Lines and Equipment:706.2
来源库
Web of Science
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221349
专题前沿与交叉科学研究院
工学院_电子与电气工程系
工学院_计算机科学与工程系
作者单位
1.Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Acad Adv Interdisciplinary Studies, Shenzhen 518057, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518057, Peoples R China
4.State Grid Zhejiang Elect Power Co Ltd, Res Inst, Hangzhou, Peoples R China
5.Zhejiang Huayun Informat Technol Co Ltd, Hangzhou, Peoples R China
6.State Grid Zhejiang Elect Power Co Ltd, Lishui Power Supply Bur, Lishui, Peoples R China
7.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China
通讯作者单位前沿与交叉科学研究院;  电子与电气工程系
推荐引用方式
GB/T 7714
Zhang, Yang,Chen, Hong Cai,Du, Yaping,et al. Power transformer fault diagnosis considering data imbalance and data set fusion[J]. High Voltage,2020,6:543-554.
APA
Zhang, Yang.,Chen, Hong Cai.,Du, Yaping.,Chen, Min.,Liang, Jie.,...&Yao, Xin.(2020).Power transformer fault diagnosis considering data imbalance and data set fusion.High Voltage,6,543-554.
MLA
Zhang, Yang,et al."Power transformer fault diagnosis considering data imbalance and data set fusion".High Voltage 6(2020):543-554.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Yang]的文章
[Chen, Hong Cai]的文章
[Du, Yaping]的文章
百度学术
百度学术中相似的文章
[Zhang, Yang]的文章
[Chen, Hong Cai]的文章
[Du, Yaping]的文章
必应学术
必应学术中相似的文章
[Zhang, Yang]的文章
[Chen, Hong Cai]的文章
[Du, Yaping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。