中文版 | English
题名

Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles

作者
通讯作者Tang,Xiaoying
发表日期
2021-07-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号115
摘要

In this study, we proposed and validated a multi-atlas and diffeomorphism guided 3D fully convolutional network (FCN) ensemble model (M-FCN) for segmenting brain anatomical regions of interest (ROIs) from structural magnetic resonance images (MRIs). A novel multi-atlas and diffeomorphism based encoding block and ROI patches with adaptive sizes were used. In the multi-atlas and diffeomorphism based encoding block, both MRI intensity profiles and expert priors from deformed atlases were encoded and fed to the proposed FCN. Utilizing patches with adaptive sizes enabled more efficient network training and testing. To incorporate both local and global contextual information of a specific ROI, we employed a long skip connection between the layer of the encoding block and the layer of the encoding-decoding block. To relieve over-fitting of the proposed FCN model on the training data, we adopted an ensemble strategy in the learning procedure. Systematic evaluations were performed on two brain MRI datasets, aiming respectively at segmenting 14 subcortical and ventricular structures and 54 whole-brain ROIs. Compared with two state-of-the-art segmentation methods including a multi-atlas based segmentation method and an existing 3D FCN segmentation model, the proposed method exhibited superior segmentation performance.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key R&D Program of China[2017YFC0112404] ; National Natural Science Foundation of China[NSF C81501546] ; Scientific Research Project of Hunan University of Arts and Science[20ZD01]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000639744500006
出版者
EI入藏号
20210910004015
EI主题词
Convolution ; Encoding (symbols) ; Magnetic resonance ; Magnetic resonance imaging ; Signal encoding
EI分类号
Magnetism: Basic Concepts and Phenomena:701.2 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:30
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221436
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Computer and Electrical Engineering,Hunan University of Arts and Science,Hunan,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Wu,Jiong,Tang,Xiaoying. Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles[J]. PATTERN RECOGNITION,2021,115.
APA
Wu,Jiong,&Tang,Xiaoying.(2021).Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles.PATTERN RECOGNITION,115.
MLA
Wu,Jiong,et al."Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles".PATTERN RECOGNITION 115(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Brain segmentation b(2389KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Jiong]的文章
[Tang,Xiaoying]的文章
百度学术
百度学术中相似的文章
[Wu,Jiong]的文章
[Tang,Xiaoying]的文章
必应学术
必应学术中相似的文章
[Wu,Jiong]的文章
[Tang,Xiaoying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。