中文版 | English
题名

Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge

作者
通讯作者Zhang,Dongxiao
发表日期
2021-06-15
DOI
发表期刊
ISSN
0360-5442
卷号225
摘要
Solar energy constitutes an effective supplement to traditional energy sources. However, photovoltaic power generation (PVPG) is strongly weather-dependent, and thus highly intermittent. High-precision forecasting of PVPG forms the basis of the production, transmission, and distribution of electricity, ensuring the stability and reliability of power systems. In this work, we propose a deep learning based framework for accurate PVPG forecasting. In particular, taking advantage of the long short-term memory (LSTM) network in solving sequential-data based regression problems, this paper considers the specific domain knowledge of PV and proposes a physics-constrained LSTM (PC-LSTM) to forecast the hourly day-ahead PVPG. It aims to overcome the shortcoming of recent machine learning algorithms that are applied based only on massive data, and thus easily producing unreasonable forecasts. Real-life PV datasets are adopted to evaluate the feasibility and effectiveness of the models. Sensitivity analysis is conducted for the selection of input feature variables based on a two-stage hybrid method. The results indicate that the proposed PC-LSTM model possesses stronger forecasting capability than the standard LSTM model. It is more robust against PVPG forecasting, and more suitable for PVPG forecasting with sparse data in practice. The PC-LSTM model also demonstrates superior performance with higher accuracy of PVPG forecasting compared to conventional machine learning and statistical methods.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
ESI高被引
学校署名
通讯
WOS记录号
WOS:000647583700003
EI入藏号
20211210106528
EI主题词
Electric power transmission ; Forecasting ; Learning algorithms ; Long short-term memory ; Photovoltaic cells ; Sensitivity analysis
EI分类号
Solar Energy and Phenomena:657.1 ; Electric Power Transmission:706.1.1 ; Machine Learning:723.4.2 ; Mathematics:921
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85102634150
来源库
Scopus
引用统计
被引频次[WOS]:127
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221445
专题工学院_环境科学与工程学院
作者单位
1.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518055,China
2.School of Electronic and Information Engineering,Harbin Institute of Technology,Shenzhen,518055,China
3.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Electrical Engineering and Electronics,University of Liverpool,Liverpool,L69 3GJ,United Kingdom
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Luo,Xing,Zhang,Dongxiao,Zhu,Xu. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. ENERGY,2021,225.
APA
Luo,Xing,Zhang,Dongxiao,&Zhu,Xu.(2021).Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge.ENERGY,225.
MLA
Luo,Xing,et al."Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge".ENERGY 225(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
[Zhu,Xu]的文章
百度学术
百度学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
[Zhu,Xu]的文章
必应学术
必应学术中相似的文章
[Luo,Xing]的文章
[Zhang,Dongxiao]的文章
[Zhu,Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。