中文版 | English
题名

A robust privacy preserving approach for electronic health records using multiple dataset with multiple sensitive attributes

作者
通讯作者Asheralieva,Alia
发表日期
2021-06-01
DOI
发表期刊
ISSN
0167-4048
卷号105
摘要
Privacy preserving data publishing of electronic health record (EHRs) for 1 to M datasets with multiple sensitive attributes (MSAs) is an interesting and challenging issue. There is always a trade-off between privacy and utility in data publishing. Most of the privacy-preserving models shows critical privacy disclosure issues and, hence, they are not robust in practical datasets. The k-anonymity model is a broadly used privacy model to analyze privacy disclosures, however, this model is only useful against identity disclosure. To address the limitations of k-anonymity, a group of privacy model extensions have been proposed in past years. It includes a p-sensitive k-anonymity model, a p+-sensitive k-anonymity model, and a balanced p+-sensitive k-anonymity model. However these privacy-preserving models are not sufficient to preserve the privacy of end-users in practical datasets. In this paper we have formalize the behavior of an adversary which perform identity and attribute disclosures on balanced p-sensitive k-anonymity model with the help of adversarial scenarios. Since balanced p-sensitive k-anonymity model is not sufficient for 1 to M with MSAs datasets privacy preservation. We propose an extended privacy model called “1: M MSA-(p, l)-diversity” for 1: M dataset with MSAs. We then perform formal modeling and verification of the proposed model using High-Level Petri Nets (HLPN) to confirm privacy attacks invalidation. Experimental results show that our proposed “1: M MSA-(p, l)-diversity model” is efficient and provide enhanced data utility of published data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000643675100007
EI入藏号
20211110062158
EI主题词
Data privacy ; Economic and social effects ; Formal verification ; Petri nets
EI分类号
Computer Applications:723.5 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Social Sciences:971
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85102399890
来源库
Scopus
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221459
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Sciences,Comsats University Islamabad,Pakistan
2.Senior Researcher,Cybernetica,Estonia
3.Department of Computer Science,Aberystwyth University,Aberystwyth,SY23 3DB,United Kingdom
4.Department of Computing,University of Hull,Hull,United Kingdom
5.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Xueyuan Avenue, Nanshan District,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Kanwal,Tehsin,Anjum,Adeel,Malik,Saif U.R.,et al. A robust privacy preserving approach for electronic health records using multiple dataset with multiple sensitive attributes[J]. COMPUTERS & SECURITY,2021,105.
APA
Kanwal,Tehsin.,Anjum,Adeel.,Malik,Saif U.R..,Sajjad,Haider.,Khan,Abid.,...&Asheralieva,Alia.(2021).A robust privacy preserving approach for electronic health records using multiple dataset with multiple sensitive attributes.COMPUTERS & SECURITY,105.
MLA
Kanwal,Tehsin,et al."A robust privacy preserving approach for electronic health records using multiple dataset with multiple sensitive attributes".COMPUTERS & SECURITY 105(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Malik,Saif U.R.]的文章
百度学术
百度学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Malik,Saif U.R.]的文章
必应学术
必应学术中相似的文章
[Kanwal,Tehsin]的文章
[Anjum,Adeel]的文章
[Malik,Saif U.R.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。