中文版 | English
题名

Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis

作者
通讯作者Tang,Bin; Lin,Lijun
共同第一作者Liu,Zhengwei; Mo,Xiaoqiong; Ma,Fenbo
发表日期
2021-06-01
DOI
发表期刊
ISSN
0144-8617
卷号261
摘要

Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.;Osteoarthritis (OA) is an age-related joint disorder and one of the leading causes of physical disability. In this study, we designed and synthesized a new polysaccharide complex, carboxymethyl chitosan strontium (CMCS-Sr), which is believed to have positive effects on relieving OA. The synthesized CMCS-Sr was structurally verified by SEM, EDS, FTIR, etc. The therapeutic effects of CMCS-Sr were evaluated using various biological experiments. The cell viability and apoptosis results reveal that CMCS-Sr can significantly promote the proliferation and suppress OA chondrocytes apoptosis in vitro. The immunofluorescence staining results suggest that CMCS-Sr facilitates the promotion of the secretion of Type II collagen (Col-II). The transcriptomic results support the observed positive effects of CMCS-Sr on inhibiting chondrocytes apoptosis and alleviating inflammatory reactions. Moreover, animal study demonstrates that CMCS-Sr effectively reduced articular cartilage damage and subchondral bone degradation. Therefore, we propose the use of CMCS-Sr as a promising candidate for relieving OA.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000634107900006
EI入藏号
20211010056947
EI主题词
Body fluids ; Cartilage ; Cell death ; Chitosan
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Biology:461.9 ; Alkaline Earth Metals:549.2 ; Organic Compounds:804.1
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85102133453
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221468
专题工学院_生物医学工程系
作者单位
1.Department of Joint and Orthopedics,Zhujiang Hospital,Southern Medical University,Guangzhou,China
2.Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,China
3.Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research,China
4.Shenzhen Key Laboratory of Cell Microenvironment,China
5.Department of Oncology,Nanfang Hospital,Southern Medical University,Guangzhou,China
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
推荐引用方式
GB/T 7714
Liu,Zhengwei,Mo,Xiaoqiong,Ma,Fenbo,et al. Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis[J]. CARBOHYDRATE POLYMERS,2021,261.
APA
Liu,Zhengwei.,Mo,Xiaoqiong.,Ma,Fenbo.,Li,Sijing.,Wu,Guofeng.,...&Lin,Lijun.(2021).Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis.CARBOHYDRATE POLYMERS,261.
MLA
Liu,Zhengwei,et al."Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis".CARBOHYDRATE POLYMERS 261(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Synthesis of carboxy(9414KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Zhengwei]的文章
[Mo,Xiaoqiong]的文章
[Ma,Fenbo]的文章
百度学术
百度学术中相似的文章
[Liu,Zhengwei]的文章
[Mo,Xiaoqiong]的文章
[Ma,Fenbo]的文章
必应学术
必应学术中相似的文章
[Liu,Zhengwei]的文章
[Mo,Xiaoqiong]的文章
[Ma,Fenbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。