中文版 | English
题名

Daily runoff forecasting by deep recursive neural network

作者
通讯作者Chen,Xiaohui
发表日期
2021-05-01
DOI
发表期刊
ISSN
0022-1694
卷号596
摘要
In recent years, deep Recurrent Neural Network (RNN) has been applied to predict daily runoff, as its wonderful ability of dealing with the high nonlinear interactions among the complex hydrology factors. However, most of the existing studies focused on the model structure and the computational load, without considering the impact from the selection of multiple input variables on the model prediction. This article presents a study to evaluate this influence and provides a method of identifying the best meteorological input variables for a run off model. Rainfall data and multiple meteorological data have been considered as input to the model. Principal Component Analysis (PCA) has been applied to the data as a contrast, to reduce dimensionality and redundancy within this input data. Two different deep RNN models, a long-short term memory (LSTM) model and a gated recurrent unit (GRU) model, were comparatively applied to predict runoff with these inputs. In this study, the Muskegon river and the Pearl river were taken as examples. The results demonstrate that the selection of input variables have a great influence on the predictions made using the RNN while the RNN model with multiple meteorological input data is shown to achieve higher accuracy than rainfall data alone. PCA method can improve the accuracy of deep RNN model effectively as it can reflect core information by classifying the original data information into several comprehensive variables.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000642334400042
EI入藏号
20210909988807
EI主题词
Classification (of information) ; Deep neural networks ; Forecasting ; Input output programs ; Rain ; Runoff
EI分类号
Flood Control:442.1 ; Precipitation:443.3 ; Information Theory and Signal Processing:716.1 ; Computer Programming:723.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85101367688
来源库
Scopus
引用统计
被引频次[WOS]:65
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221512
专题工学院_环境科学与工程学院
作者单位
1.School of Civil Engineering,University of Leeds,Leeds,LS2 9JT,United Kingdom
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Deltares,Delft,Netherlands
第一作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zhang,Jiangwei,Chen,Xiaohui,Khan,Amirul,et al. Daily runoff forecasting by deep recursive neural network[J]. JOURNAL OF HYDROLOGY,2021,596.
APA
Zhang,Jiangwei.,Chen,Xiaohui.,Khan,Amirul.,Zhang,You kuan.,Kuang,Xingxing.,...&Nuttall,Jonathan.(2021).Daily runoff forecasting by deep recursive neural network.JOURNAL OF HYDROLOGY,596.
MLA
Zhang,Jiangwei,et al."Daily runoff forecasting by deep recursive neural network".JOURNAL OF HYDROLOGY 596(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jiangwei]的文章
[Chen,Xiaohui]的文章
[Khan,Amirul]的文章
百度学术
百度学术中相似的文章
[Zhang,Jiangwei]的文章
[Chen,Xiaohui]的文章
[Khan,Amirul]的文章
必应学术
必应学术中相似的文章
[Zhang,Jiangwei]的文章
[Chen,Xiaohui]的文章
[Khan,Amirul]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。