中文版 | English
题名

Discrete approximation scheme in distributionally robust optimization

作者
通讯作者Zhang,Jin
发表日期
2021-05-01
DOI
发表期刊
ISSN
1004-8979
EISSN
2079-7338
卷号14期号:2页码:285-320
摘要
Discrete approximation, which has been the prevailing scheme in stochastic programming in the past decade, has been extended to distributionally robust optimization (DRO) recently. In this paper, we conduct rigorous quantitative stability analysis of discrete approximation schemes for DRO, which measures the approximation error in terms of discretization sample size. For the ambiguity set defined through equality and inequality moment conditions, we quantify the discrepancy between the discretized ambiguity sets and the original set with respect to the Wasserstein metric. To establish the quantitative convergence, we develop a Hoffman error bound theory with Hoffman constant calculation criteria in a infinite dimensional space, which can be regarded as a byproduct of independent interest. For the ambiguity set defined by Wasserstein ball and moment conditions combined with Wasserstein ball, we present similar quantitative stability analysis by taking full advantage of the convex property inherently admitted by Wasserstein metric. Efficient numerical methods for specifically solving discrete approximation DRO problems with thousands of samples are also designed. In particular, we reformulate different types of discrete approximation problems into a class of saddle point problems with completely separable structures. The stochastic primal-dual hybrid gradient (PDHG) algorithm where in each iteration we update a random subset of the sampled variables is then amenable as a solution method for the reformulated saddle point problems. Some preliminary numerical tests are reported.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
NSFC[11971090,11971220] ; General Research Fund from Hong Kong Research Grants Council[12313516] ; Fundamental Research Funds for the Central Universities[DUT19LK24] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515011152]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied ; Mathematics
WOS记录号
WOS:000613945700001
出版者
Scopus记录号
2-s2.0-85101166385
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221515
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.School of Mathematical Sciences,Dalian University of Technology,Dalian,116024,China
2.Department of Mathematics,University of Hong Kong,Hong Kong
3.SUSTech International Center for Mathematics,Department of Mathematics,Southern University of Science and Technology,Shenzhen,China
通讯作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Liu,Yongchao,Yuan,Xiaoming,Zhang,Jin. Discrete approximation scheme in distributionally robust optimization[J]. Numerical Mathematics-Theory Methods and Applications,2021,14(2):285-320.
APA
Liu,Yongchao,Yuan,Xiaoming,&Zhang,Jin.(2021).Discrete approximation scheme in distributionally robust optimization.Numerical Mathematics-Theory Methods and Applications,14(2),285-320.
MLA
Liu,Yongchao,et al."Discrete approximation scheme in distributionally robust optimization".Numerical Mathematics-Theory Methods and Applications 14.2(2021):285-320.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Yongchao]的文章
[Yuan,Xiaoming]的文章
[Zhang,Jin]的文章
百度学术
百度学术中相似的文章
[Liu,Yongchao]的文章
[Yuan,Xiaoming]的文章
[Zhang,Jin]的文章
必应学术
必应学术中相似的文章
[Liu,Yongchao]的文章
[Yuan,Xiaoming]的文章
[Zhang,Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。