中文版 | English
题名

General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows

作者
通讯作者Wu,Lei
发表日期
2021-04-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号430
摘要
The general synthetic iterative scheme (GSIS) is extended to find the steady-state solution of the nonlinear gas kinetic equation, resolving the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The key ingredient of GSIS is the tight coupling of gas kinetic and macroscopic synthetic equations, where the constitutive relations explicitly contain Newton's law of shear stress and Fourier's law of heat conduction. The higher-order constitutive relations describing rarefaction effects are calculated from the velocity distribution function; however, their constructions are simpler than our previous work (Su et al., 2020 [28]) for linearized gas kinetic equations. On the other hand, solutions of macroscopic synthetic equations are used to accelerate the evolution of gas kinetic equation at the next iteration step. A rigorous linear Fourier stability analysis of the present schemes in periodic system shows that the error decay rate of GSIS can be smaller than 0.5, which means that the deviation to steady-state solution can be reduced by 3 orders of magnitude in 10 iterations. Other important advantages of the GSIS are: (i) it does not rely on the specific form of Boltzmann collision operator, and (ii) it can be solved by sophisticated techniques in computational fluid dynamics, making it amenable to large scale engineering applications. In this paper, the efficiency and accuracy of GSIS are demonstrated by a number of canonical test cases in rarefied gas dynamics, covering different flow regimes. (C) 2020 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie[793007] ; Engineering and Physical Sciences Research Council in the UK["EP/R041938/1","EP/M021475/1","EP/R029581/1"] ; National Natural Science Foundation of China[91530319]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000623416900013
出版者
EI入藏号
20210609895116
EI主题词
Computational fluid dynamics ; Decay (organic) ; Distribution functions ; Gas dynamics ; Gases ; Heat conduction ; Integral equations ; Iterative methods ; Kinetic energy ; Kinetics ; Nonlinear equations ; Shear stress
EI分类号
Gas Dynamics:631.1.2 ; Heat Transfer:641.2 ; Biochemistry:801.2 ; Calculus:921.2 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Classical Physics; Quantum Theory; Relativity:931 ; Mechanics:931.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221559
专题工学院_力学与航空航天工程系
作者单位
1.James Weir Fluids Laboratory,Department of Mechanical and Aerospace Engineering,University of Strathclyde,Glasgow,G1 1XJ,United Kingdom
2.Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang,621000,China
3.School of Engineering,University of Edinburgh,Edinburgh,EH9 3FB,United Kingdom
4.National Laboratory of Computational Fluid Dynamics,Beijing,100191,China
5.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Zhu,Lianhua,Pi,Xingcai,Su,Wei,et al. General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2021,430.
APA
Zhu,Lianhua,Pi,Xingcai,Su,Wei,Li,Zhi Hui,Zhang,Yonghao,&Wu,Lei.(2021).General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows.JOURNAL OF COMPUTATIONAL PHYSICS,430.
MLA
Zhu,Lianhua,et al."General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows".JOURNAL OF COMPUTATIONAL PHYSICS 430(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Lianhua]的文章
[Pi,Xingcai]的文章
[Su,Wei]的文章
百度学术
百度学术中相似的文章
[Zhu,Lianhua]的文章
[Pi,Xingcai]的文章
[Su,Wei]的文章
必应学术
必应学术中相似的文章
[Zhu,Lianhua]的文章
[Pi,Xingcai]的文章
[Su,Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。