题名 | Dilated convolutional neural networks for fiber Bragg grating signal demodulation |
作者 | |
发表日期 | 2021-03-01
|
DOI | |
发表期刊 | |
ISSN | 1094-4087
|
EISSN | 1094-4087
|
卷号 | 29期号:5页码:7110-7123 |
摘要 | In quasi-distributed fiber Bragg grating (FBG) sensor networks, challenges are known to arise when signals are highly overlapped and thus hard to separate, giving rise to substantial error in signal demodulation. We propose a multi-peak detection deep learning model based on a dilated convolutional neural network (CNN) that overcomes this problem, achieving extremely low error in signal demodulation even for highly overlapped signals. We show that our FBG demodulation scheme enhances the network multiplexing capability, detection accuracy and detection time of the FBG sensor network, achieving a root-mean-square (RMS) error in peak wavelength determination of < 0.05 pm, with a demodulation time of 15 ms for two signals. Our demodulation scheme is also robust against noise, achieving an RMS error of < 0.47 pm even with a signal-to-noise ratio as low as 15 dB. A comparison on our high-performance computer with existing signal demodulation methods shows the superiority in RMS error of our dilated CNN implementation. Our findings pave the way to faster and more accurate signal demodulation methods, and testify to the substantial promise of neural network algorithms in signal demodulation problems. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Nanyang Technological University (NSFC)[11774102]
|
WOS研究方向 | Optics
|
WOS类目 | Optics
|
WOS记录号 | WOS:000624968100065
|
出版者 | |
EI入藏号 | 20210909977912
|
EI主题词 | Convolution
; Deep learning
; Demodulation
; Error detection
; Fiber Bragg gratings
; Optical variables measurement
; Sensor networks
; Signal to noise ratio
|
EI分类号 | Information Theory and Signal Processing:716.1
; Optical Variables Measurements:941.4
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85101405419
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:26
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221600 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore,50 Nanyang Avenue,639798,Singapore 2.CINTRA CNRS,NTU/Thales,UMI 3288,Singapore,50 Nanyang Drive,637553,Singapore 3.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Li,Baocheng,Tan,Zhi Wei,Shum,Perry Ping,et al. Dilated convolutional neural networks for fiber Bragg grating signal demodulation[J]. OPTICS EXPRESS,2021,29(5):7110-7123.
|
APA |
Li,Baocheng,Tan,Zhi Wei,Shum,Perry Ping,Wang,Chenlu,Zheng,Yu,&Wong,Liang Jie.(2021).Dilated convolutional neural networks for fiber Bragg grating signal demodulation.OPTICS EXPRESS,29(5),7110-7123.
|
MLA |
Li,Baocheng,et al."Dilated convolutional neural networks for fiber Bragg grating signal demodulation".OPTICS EXPRESS 29.5(2021):7110-7123.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论