中文版 | English
题名

Generative Adversarial Capsule Network with ConvLSTM for Hyperspectral Image Classification

作者
发表日期
2021-03-01
DOI
发表期刊
ISSN
1545-598X
EISSN
1558-0571
卷号18期号:3页码:523-527
摘要
Recently, deep learning has been widely applied in hyperspectral image (HSI) classification since it can extract high-level spatial-spectral features. However, deep learning methods are restricted due to the lack of sufficient annotated samples. To address this problem, this letter proposes a novel generative adversarial network (GAN) for HSI classification that can generate artificial samples for data augmentation to improve the HSI classification performance with few training samples. In the proposed network, a new discriminator is designed by exploiting capsule network (CapsNet) and convolutional long short-term memory (ConvLSTM), which extracts the low-level features and combines them together with local space sequence information to form the high-level contextual features. In addition, a structured sparse L_{2,1} constraint is imposed on sample generation to control the modes of data being generated and achieve more stable training. The experimental results on two real HSI data sets show that the proposed method can obtain better classification performance than the several state-of-the-art deep classification methods.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000622098500031
EI入藏号
20211010019298
EI主题词
Classification (of information) ; Deep learning ; Learning systems ; Spectroscopy
EI分类号
Information Theory and Signal Processing:716.1
Scopus记录号
2-s2.0-85092389255
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9032346
引用统计
被引频次[WOS]:26
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221612
专题工学院_电子与电气工程系
作者单位
1.Sichuan Provincial Key Laboratory of Information Coding and Transmission,Southwest Jiaotong University,Chengdu,China
2.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
3.Key Laboratory of Spectral Imaging Technology,Chinese Academy of Sciences,Xi'an,China
4.Department of Electrical and Computer Engineering,Mississippi State University,Starkville,United States
推荐引用方式
GB/T 7714
Wang,Wei Ye,Li,Heng Chao,Deng,Yang Jun,et al. Generative Adversarial Capsule Network with ConvLSTM for Hyperspectral Image Classification[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(3):523-527.
APA
Wang,Wei Ye,Li,Heng Chao,Deng,Yang Jun,Shao,Li Yang,Lu,Xiao Qiang,&Du,Qian.(2021).Generative Adversarial Capsule Network with ConvLSTM for Hyperspectral Image Classification.IEEE Geoscience and Remote Sensing Letters,18(3),523-527.
MLA
Wang,Wei Ye,et al."Generative Adversarial Capsule Network with ConvLSTM for Hyperspectral Image Classification".IEEE Geoscience and Remote Sensing Letters 18.3(2021):523-527.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Wei Ye]的文章
[Li,Heng Chao]的文章
[Deng,Yang Jun]的文章
百度学术
百度学术中相似的文章
[Wang,Wei Ye]的文章
[Li,Heng Chao]的文章
[Deng,Yang Jun]的文章
必应学术
必应学术中相似的文章
[Wang,Wei Ye]的文章
[Li,Heng Chao]的文章
[Deng,Yang Jun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。