中文版 | English
题名

DLGEA: a deep learning guided evolutionary algorithm for water contamination source identification

作者
通讯作者Jiang,Jie
发表日期
2021
DOI
发表期刊
ISSN
0941-0643
EISSN
1433-3058
卷号33页码:11889-11903
摘要
Water distribution network (WDN) is one of the most essential infrastructures all over the world and ensuring water quality is always a top priority. To this end, water quality sensors are often deployed at multiple points of WDNs for real-time contamination detection and fast contamination source identification (CSI). Specifically, CSI aims to identify the location of the contamination source, together with some other variables such as the starting time and the duration. Such information is important in making an efficient plan to mitigate the contamination event. In the literature, simulation-optimisation methods, which combine simulation tools with evolutionary algorithms (EAs), show great potential in solving CSI problems. However, the application of EAs for CSI is still facing big challenges due to their high computational cost. In this paper, we propose DLGEA, a deep learning guided evolutionary algorithm to improve the efficiency by optimising the search space of EAs. Firstly, based on a large number of simulated contamination events, DLGEA trains a deep neural network (DNN) model to capture the relationship between the time series of sensor data and the contamination source nodes. Secondly, given a contamination event, DLGEA guides the initialisation and optimise the search space of EAs based on the top K contamination nodes predicated by the DNN model. Empirically, based on two benchmark WDNs, we show that DLGEA outperforms the CSI method purely based on EAs in terms of both the average topological distance and the accumulated errors between the predicted and the real contamination events.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61873119] ; National Key R&D Program of China[2019YFC0810705] ; Science and Technology Innovation Commission of Shenzhen[KQJSCX20180322151418232]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000629917800005
出版者
EI入藏号
20211310130788
EI主题词
Contamination ; Deep neural networks ; Evolutionary algorithms ; Learning algorithms ; Neural networks ; Water distribution systems ; Water pollution ; Water quality
EI分类号
Water Analysis:445.2 ; Water Supply Systems:446.1 ; Water Pollution:453
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85102925094
来源库
Scopus
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221713
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qian,Kai,Jiang,Jie,Ding,Yulong,et al. DLGEA: a deep learning guided evolutionary algorithm for water contamination source identification[J]. NEURAL COMPUTING & APPLICATIONS,2021,33:11889-11903.
APA
Qian,Kai,Jiang,Jie,Ding,Yulong,&Yang,Shuang Hua.(2021).DLGEA: a deep learning guided evolutionary algorithm for water contamination source identification.NEURAL COMPUTING & APPLICATIONS,33,11889-11903.
MLA
Qian,Kai,et al."DLGEA: a deep learning guided evolutionary algorithm for water contamination source identification".NEURAL COMPUTING & APPLICATIONS 33(2021):11889-11903.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
百度学术
百度学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
必应学术
必应学术中相似的文章
[Qian,Kai]的文章
[Jiang,Jie]的文章
[Ding,Yulong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。